Complications following distal biceps tendon repair are common. Amarasooriya et al. included 3091 primary distal biceps tendon repairs in a systematic review and described an overall complication rate of 25%, including 4.6% major and 20.4% minor complications. The most common complications were re-rupture, nerve injuries, radio-ulnar (RU) synostosis, and heterotopic ossifications (HO).

Heterotopic ossification occurred in 3.9% of cases and was more frequently observed with the double incision approach (5.8%)\(^\text{14}\). Ford et al. reported a prevalence of 1.3% of patients with symptomatic postoperative HO in a cohort of 970 patients\(^\text{15}\). Although the patient sample was large, HO was evaluated in symptomatic patients only. The reported clinical findings were mostly of mild or moderate severity. Routine HO screening is rarely performed. Huynh et al. and Caekebeke et al. reported on routine postoperative radiographs\(^\text{16-17}\). Postoperative heterotopic ossification was found in 56.7% and 28.6% respectively. In all cases, it was minor HO that did not require further treatment. It is highly likely that routine

Prevalence and clinical implications of heterotopic ossification after distal biceps tendon repair

W. GEUSKENS\(^\text{1,2}\), P. CAEKEBEKE\(^\text{3}\), R. VAN RIET\(^\text{1,4,5}\)

\(^\text{1}\)AZ Monica Hospital, Department of Orthopaedic surgery and Traumatology, Deurne, Belgium; \(^\text{2}\)UZ Leuven, Department of Orthopaedic Surgery and Traumatology, Leuven, Belgium; \(^\text{3}\)Ziekenhuis Oost-Limburg, Department of Orthopaedics surgery and Traumatology, Genk, Belgium; \(^\text{4}\)University of Antwerp, Department of Orthopedic surgery and Traumatology, Edegem, Belgium; \(^\text{5}\)Harley Street Specialist Hospital, London, UK.

Correspondence at: Willem Geuskens, Jodenstraat 25, 2800 Mechelen, Belgium, Email: willem.geuskens@hotmail.com

INTRODUCTION

Distal biceps tendon ruptures have an incidence rate of 2.5 per 100,000 patients per year\(^\text{1}\). The vast majority of complete distal biceps tendon ruptures occur in men between 40 and 60 years of age, but a bimodal incidence distribution, which includes elite athletes, has also been described\(^\text{2-3}\). The typical mechanism of injury is an isometric contraction with the elbow in extension and the forearm in supination\(^\text{4-5}\). Conservative treatment may result in decreased resistance to fatigue and loss of supination and flexion strength\(^\text{6-7}\). Surgical management has been shown to lead to better outcomes over the nonoperative approach regarding the functional outcomes, with better flexion and supination strength\(^\text{8}\).

Various surgical approaches and fixation methods have been described, all with similar outcomes\(^\text{9-10}\). The most frequently used fixation techniques are buttons, suture anchors, bone tunnels, with or without the use of an interference-screw and are performed through either a single- or double-incision approach\(^\text{11-12-13}\).

Complications following distal biceps tendon repair are common. Amarasooriya et al. included 3091 primary distal biceps tendon repairs in a systematic review and described an overall complication rate of 25%, including 4.6% major and 20.4% minor complications.\(^\text{14}\) The most common complications were re-rupture, nerve injuries, radio-ulnar (RU) synostosis, and heterotopic ossifications (HO).

Heterotopic ossification occurred in 3.9% of cases and was more frequently observed with the double incision approach (5.8%)\(^\text{14}\). Ford et al. reported a prevalence of 1.3% of patients with symptomatic postoperative HO in a cohort of 970 patients\(^\text{15}\). Although the patient sample was large, HO was evaluated in symptomatic patients only. The reported clinical findings were mostly of mild or moderate severity. Routine HO screening is rarely performed. Huynh et al. and Caekebeke et al. reported on routine postoperative radiographs\(^\text{16-17}\). Postoperative heterotopic ossification was found in 56.7% and 28.6% respectively. In all cases, it was minor HO that did not require further treatment. It is highly likely that routine
All patients underwent CT imaging of the proximal radius at the study-related follow-up to evaluate the presence and size of heterotopic ossification. The clinical relevance of HO was assessed based on ROM through the Hastings and Graham classification (Figure 1)19. Visual analog scale (VAS), Mayo Elbow Performance Index20, and Disabilities of Arm, Shoulder and Hand (DASH) scores were used to assess for pain and patient satisfaction. Functional outcome measurements included range of motion (extension, flexion, pron- and supination).

Data were checked for normality using the Shapiro-Wilk test. Comparisons of pain and function outcomes between groups (HO and non-HO) were based on the Mann-Whitney U test for independent samples due to the non-normal data distribution. Outcomes were considered significantly different if the calculated p-value was < 0.05.

RESULTS

In this retrospective study, a total of 35 patients who underwent distal biceps tendon repair were included. All 35 patients were male with the dominant side affected in 19 cases. Heterotopic ossification of the distal biceps tendon was identified in 19 patients on postoperative CT imaging (incidence of 54.29%) with an average size of 60.37 mm2 (Range 11-364). The duration of clinical and radiographic follow-up were not significantly different between patients with or without HO (p = 0.92), with a mean follow-up period of 33 months (Range 3 to 70) for the HO group and 32 months (Range 16 to 55) for the non-HO group. The mean age at time of surgery of the affected group was 48 years (Range 29 to 60) versus 46 years (Range 25 to 56) of the non-affected group.

Out of the 19 patients with radiographic HO, 1 patient experienced a clinically relevant decrease in ROM due to limited pronation (10°) and was consequently classified as Class IIB. All other patients with positive CT-scan findings did not experience any functional limitation (Class I).

The mean VAS score for pain of the cohort was 0.4 (Range 0 to 3) and did not statistically differ between

Class I: radiographic heterotopic ossification without functional limitation.
Class II: radiographic heterotopic ossification with subtotal functional limitations.
 IIA: limited flexion - extension.
 IIB: limited pronation - supination.
 IIC: limited in both planes.
Class III: radiographic and functional ankylosis.
 IIIA: ankylosis in flexion - extension.
 IIIB: ankylosis in pronation - supination.
 IIIC: ankylosis in both planes.

Fig. 1. — Overview of the Hastings and Graham classification19.

Table I. — Patient characteristics

<table>
<thead>
<tr>
<th>Age at surgery (years)</th>
<th>Trauma-surgery interval (days)</th>
<th>Follow-up (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HO group</td>
<td>non-HO group</td>
</tr>
<tr>
<td>Mean</td>
<td>47.737</td>
<td>46.375</td>
</tr>
<tr>
<td>Shapiro-Wilk</td>
<td>0.948</td>
<td>0.915</td>
</tr>
<tr>
<td>P-value of Shapiro-Wilk</td>
<td>0.364</td>
<td>0.139</td>
</tr>
<tr>
<td>Minimum</td>
<td>29.000</td>
<td>25.000</td>
</tr>
<tr>
<td>Maximum</td>
<td>60.000</td>
<td>56.000</td>
</tr>
</tbody>
</table>
the two groups (non-HO 0.3 versus HO 0.6, p = 0.3).

Patient satisfaction was assessed using the MEPI score and DASH score (Table III). There was no significant difference in outcomes between the two groups with p-values of 0.5 and 0.6 respectively.

There was no significant difference in postoperative range of motion between the two groups (Table II). The mean range of motion for the HO group was 135° of flexion (Range 130 to 145), -0.3° of extension (Range -5 to 0), 71° of pronation (Range 10 to 90) and 83° of supination (Range 60 to 100) compared to 132° of flexion (Range 115 to 140), -0.31° of extension (Range -5 to 0), 75° of pronation (Range 60 to 90) and 76° of supination (Range 55 to 90) for the non-HO group.

In 22 of the 35 patients, an interference screw was used as an additional fixation. Patients in whom an interference screw was used had a higher incidence (%) and mean size (mm²) of postoperative HO compared to those in who no interference screw was used (59% versus 46.2% and 70 mm² versus 39 mm²) (Figure 2 and 3). However, the differences were not statistically significant (p = 0.5 and p = 0.8).

Timing of surgery after trauma varied substantially, from 0 to 49 days. The mean time of surgery after trauma in the HO group was 6 days versus 10 days in the non-HO group, with a p-value of 0.8, which was not statistically significant.
Heterotopic ossification of the biceps tendon is a well-recognized complication following distal biceps tendon repair. The prevalence described in current literature is generally an underestimation, as diagnostic imaging is almost always obtained only in cases of symptomatic HO and most patients are asymptomatic or experience only mild or moderate discomfort.

In this case series, HO could be visualized on post-operative CT-scans in more than half of the patients, with a prevalence of 54.29%. These findings support our presumption of a higher prevalence of postoperative HO than is commonly reported. One patient experienced limited pronation (10°), but no further treatment was needed since it did not compromise his daily activities. None of the other patients with HO exhibited any symptoms and would probably not have been diagnosed if no imaging had been done. Larger cohort studies described rates of postoperative HO of 1.3% up to 3.9%\(^\text{14-15}\). However, no asymptomatic patients were included, and criteria used for patient screening were not clear. Smaller studies that included routine postoperative imaging showed a higher prevalence\(^\text{16-17}\). In addition to the inclusion of asymptomatic patients, the longer follow-up period and the use of CT-scans might contribute to the higher prevalence of postoperative HO in our study. We performed control CT-scans, on average almost 3 years postoperatively whereas most studies used a minimum follow-up period of only 8 weeks\(^\text{14-15}\). Although there is no consensus on the timing of screening, some studies describe that HO can manifest up to 12 weeks after trauma or surgery, with maturation occurring 3 to 6 months after the onset of HO\(^\text{21-22}\).

The clinical implications of major HO have been well described. The most prevalent clinical implications of this ectopic lamellar bone formation in soft tissues are restricted joint range of motion, chronic pain, and soft-tissue breakdown\(^\text{23}\). These complications can result in substantial morbidity. As a result, clinically relevant heterotopic ossification often requires surgical intervention to restore joint motion and function\(^\text{24}\). This study evaluated the clinical implications of minor postoperative HO. Despite its high incidence, we were not able to detect any significant difference in pain, function and patient satisfaction between the HO group and the non-HO group. No patients with HO in our case series required additional treatment for their HO.

Some prophylactic measures in the prevention of postoperative HO have been described. Indomethacin prophylaxis after distal biceps tendon repair has been shown to reduce RU synostosis and HO rates\(^\text{25-26}\). However, a recent paper has reported no benefit of 3 weeks of Indomethacin over 1 week of Meloxicam alone in the prevention of HO formation after distal biceps tendon repair\(^\text{27}\). Due to the potential negative effects on capsule healing, we do not integrate standard NSAIDs or indomethacin prophylaxis in our postoperative protocol\(^\text{28}\). This may have contributed to the relatively high incidence of HO in our study cohort. We do use extensive wound lavage when drilling our tunnels. Although literature on the protective effect of intraoperative lavage in the formation of postoperative HO in the elbow is lacking, it has been proven to reduce the incidence as well as the severity of heterotopic ossification after total hip arthroplasty\(^\text{29}\). Future research should investigate whether the prophylactic effect of extensive lavage can be extrapolated to this type of surgery.

According to Wörner et al., one of the factors influencing the occurrence of HO is timing of surgery after trauma, prolonged trauma to surgery intervals were associated with a higher prevalence of HO\(^\text{27}\). Contrary to the findings of Wörner et al., we could not show a significant difference between the HO group and the non-HO group regarding the timing of surgery after trauma\(^\text{27}\). In our case series, the HO group underwent surgical repair even slightly earlier after trauma compared to the non-HO group.

Limitations of this study are the following. First, the relatively small sample size of the cohort, which increases the likelihood of type II error. Therefore, possible differences might have been detected with a greater number of patients. Nevertheless, our results do not show any difference between the two groups. Second, the fact that only one surgical approach was evaluated. Recent literature shows a lower incidence of HO after a single-incision compared to a two-incision approach\(^\text{14-15}\). In our study a single-incision approach...
was used in all patients, implying that the overall incidence of HO might be even higher than the incidence we described. Finally, the influence of tourniquet use, lavage and NSAID use could not be assessed separately in this study, as the same prophylactic measures were applied in all patients.

CONCLUSION

We reported a higher prevalence of HO than previously described, possibly because most studies do not perform routine screening for HO in asymptomatic patients. No patient received additional treatment and we were unable to detect any difference between the two groups regarding patient satisfaction and ROM. Since minor postoperative HO does not require additional treatment, routine screening of asymptomatic patients is therefore not recommended.

Future research should investigate the effect of prophylactic measures on symptomatic, major HO formation after distal biceps repair as this may lead to significant functional impairment.

REFERENCES
