
and high-throughput sequencing5,6. Fuja et al. have 
emphasized that transglutaminase-2 (TGM2) is under-
expressed in metastatic OS lesions compared with 
primary bone tumors, and TGM2 knockdown inhibits 
the proliferation and migration of metastatic OS cells 
in vitro, as well as suppressing metastatic potential and 
improving survival outcome in vivo7. Another research 
group focused on Notch signaling abnormalities in OS, 
and they found that Notch3 is a prognostic factor for OS. 
They then further demonstrated that Notch3 silencing 
reduced the OS-associated pulmonary metastasis 
through the effector matrix metalloproteinase 7 and 
its downstream target gene hairy and enhancer of 
split-18. Additionally, it has been reported that a cluster 
of differentiation 44 (CD44) is also associated with 
the high potential for metastasis and poor survival in 
patients with OS; in vitro experiments have revealed 
that CD44 silencing impairs the migratory and invasive 
functions in highly metastatic OS cell lines9. However, 
few studies have investigated the prognostic prediction 
model of metastatic OS.

In the current study, the prognostic genes of 
metastatic OS were screened based on expression 
profile data from the National Center for Biotechnology 
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Osteosarcoma (OS) is a malignant primary bone tumor with a high incidence. This study aims to construct a prognostic 
prediction model by screening the prognostic mRNA of metastatic OS. Data on four eligible expression profiles from the 
National Center for Biotechnology Information Gene Expression Omnibus repository were obtained based on inclusion 
criteria and defined as the training set or the validation set. The differentially expressed genres (DEGs) between meta- 
static and non-metastatic OS samples in the training set were first identified, and DEGs related to prognosis were screened 
by univariate Cox regression analysis. In total, 107 DEGs related to the prognosis of metastatic OS were identified. Then, 
46 DEGs were isolated as the optimized prognostic gene signature, and a metastatic-OS discriminating classifier was 
constructed, which had a high accuracy in distinguishing metastatic from non-metastatic OS samples. Furthermore, four 
optimized prognostic gene signatures (ALOX5AP, COL21A1, HLA-DQB1, and LDHB) were further screened, and the 
prognostic prediction model for metastatic OS was constructed. This model possesses a relatively satisfying prediction 
ability both in the training set and validation set. The prognostic prediction model that was constructed based on the four 
prognostic mRNA signatures has a high predictive ability for the prognosis of metastatic OS.
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INTRODUCTION

Osteosarcoma (OS) is a malignant primary bone tumor, 
with an annual incidence of 3.4/1,000,000 worldwide1.
Currently, the conventional treatment method for OS is 
a combination of surgery and adjuvant chemotherapy, 
which has improved long-term outcomes for patients 
with a localized OS2. The five-year survival rate of 
patients with non-metastatic OS has reached 65% to 
70%, whereas no significant improvements have been 
found in patients with metastatic OS, who have a poor 
prognosis and an overall survival rate of 20% to 30%3 
Despite the significant difference in the survival rate 
between patients with metastatic and non-metastatic 
OS in the last three decades, effective treatment for 
metastatic OS is still lacking1,4. An understanding of 
the mechanisms of OS metastasis is urgently needed1. 
Therefore, it is crucial to identify novel diagnostic 
markers and therapeutic methods, as well as underlying 
prognostic factors for patients with metastatic OS.

Encouragingly, several underlying mechanisms 
of OS have been identified based on a wide range of 
analytic approaches, including conventional experi-
mental techniques, association analysis, microarrays, 
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U133A Array and used as the validation set for the 
prognostic model.

Data preprocessing and screening of differentially 
expressed mRNAs

Limma package (version 3.34.0, https://bioconductor.
org/packages/release/bioc/html/limma.html)14 in R 
3.4.1 was used for data transformation of raw datasets 
A and C of TXT format, and data standardization was 
performed using the median method. Meanwhile, 
for dataset D, raw data were pre-processed using 
oligo (version 1.41.1, http://www.bioconductor.org/
packages/release/bioc/html/oligo.html)15 in R 3.4.1, 
including the missing value supplement using the 
median method, background correction by the MAS 
method, and normalization using the quantiles method. 
Also, data in dataset B were normalized using the 
quantiles method based on preprocessCore (Version 
1.44.0, https://www.bioconductor.org/packages/
release/bioc/html/preprocessCore.html)16 in R 3.4.1. 
Based on the normalized data in the training set (dataset 
A), limma package (version 3.34.7)14 in R 3.4.1 was 
used to screen DEGs between 34 metastatic and 19 
non-metastatic OS samples. The thresholds were set 
as |log fold change (FC)| >0.5 and false discovery 
rate (FDR) <0.05. Then, bidirectional hierarchical 
clustering based on a centered Pearson correlation 
algorithm was performed by pheatmap (version 1.0.8, 
https://cran.r-project.org/web/packages/pheatmap/
index.html)17 according to the expression values of the 
DEGs in the training set. Furthermore, based on the 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID) program (version 6.8, https://
david.ncifcrf.gov/)18,19, gene ontology (GO) functional 
annotation associated with biological process analysis 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis were performed 
with P-value <0.05 as the screening threshold.

Identification of differentially expressed mRNAs related 
to prognosis

DEGs related to the overall survival were screened 
by the univariate Cox regression analysis survival 
package (version 2.41.3, https://cran.r-project.org/web/
packages/survival/index.html)20 in R 3.4.1 with the 
threshold of log-rank P-value <0.05.

The establishment of the SVM classifier

First, based on the DEGs related to prognosis, the 
optimized DEG signatures were screened by a recursive 

Information (NCBI) Gene Expression Omnibus (GEO) 
repository. Then, these prognostic genes were used to 
construct a metastatic-OS discriminating classifier as 
well as a prognostic prediction model of metastatic OS 
using bioinformatics methods. We aimed to provide 
some useful insights for improving the prognosis of 
patients with metastatic OS.

MATERIALS AND METHODS

The data for the expression profiles were preliminarily 
screened according to the search words “osteosarcoma 
and Homo sapiens” from the NCBI GEO repository 
(http://www.ncbi.nlm.nih.gov/geo/). Then, the eligible 
data were included in this study as the following 
inclusion criteria: (1) the selected datasets were gene 
expression profiles data; (2) the samples in the data were 
solid tissues of OS; (3) the samples were divided into 
metastatic and non-metastatic OS tissues; (4) the total 
number of samples was not less than 30, and (5) the 
datasets contained survival and prognosis information 
of the samples. A dataset that met the (1), (2), (3), and 
(4) search condition was used as a validation set of the 
support vector machine (SVM) classifier. The dataset 
that met the (1), (2), (4), and (5) search condition 
was used as a validation set for the prognostic model. 
According to the above search strategy, the eligible 
datasets were included as follows.

Dataset A: The gene expression profile data 
(GSE21257)10 contained 34 metastatic samples and 
19 non-metastatic OS samples, and clinical survival 
and prognosis information were also obtained. All 
samples were sequenced on the Illumina human-6 
v2.0 expression BeadChip. The dataset that met all the 
search conditions was used as the training set.

Dataset B: The gene expression profile data 
(GSE87624)11 included three normal samples, 8 
metastatic samples, 25 non-metastatic samples, and 16 
OS samples with an unknown nature of the metastatic. 
All the samples were sequenced on an Illumina HiSeq 
2000 (Homo sapiens) and used as the validation set for 
the SVM classifier.

Dataset C: The gene expression profile data 
(GSE39055)12 included 37 OS samples with clinical 
survival and prognosis information. All the samples 
were sequenced on an Illumina HumanHT-12 WG-
DASL V4.0 R2 expression BeadChip and used as the 
validation set for the prognostic model.

Dataset D: The gene expression profile data 
(GSE1609)13 included 34 OS samples with clinical 
survival and prognosis information. All the samples 
were sequenced on an Affymetrix Human Genome 
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the selective criteria, including 194 downregulated 
and 206 upregulated DEGs (Figure 2A). Then, 
bidirectional hierarchical clustering was conducted 
for these 400 DEGs, indicating that these DEGs could 
significantly distinguish between metastatic and non-
metastatic OS samples (Figure 2B). To further identify 
the functional characteristics of DEGs, the functional 
enrichment analysis of genes was conducted using 
DAVID. Consequently, the GO analysis of the DEGs 
revealed that the significantly enriched terms primarily 
concentrated on immune response, inflammatory 
response, the interferon-gamma-mediated signaling 
pathway, antigen processing and presentation, and 
innate immune response (Figure 2C). Also, the KEGG 
pathway analysis implied that these DEGs were 
responsible for antigen processing and presentation, cell 
adhesion molecules, allograft rejection, complement 
and coagulation cascades, and osteoclast differentiation 
(Figure 2C).

The univariate Cox regression analyses in the training 
set revealed that a total of 107 DEGs are significantly 
associated with the patient’s prognosis. The RFE 
algorithm showed that the optimized DEGs’ signatures 
contain 46 genes when accuracy is the highest value 
(Figure 3A). Then, a metastatic-OS discriminating 
SMV classifier was established based on the optimized 
46 DEG signatures. The sample distribution based on 
this classifier in the training set and validation set is 
shown in Figure 3B and 3C, respectively. The ROC 
curve analysis revealed that the area under the curve 
(AUC), Sen, Spe, PPV, and NPV of this SMV classifier 
are 0.986, 0.917, 0.941, 0.971, and 0.842 in the training 

feature elimination (RFE) algorithm using the caret 
package (version 6.0-76, https://cran.r-project.org/
web/packages/caret)21,22 in R 3.4.3. Then, to evaluate 
the sensitivity and specificity of the feature gene in the 
discriminative prediction, the SVM-based classifier 
was established using the e1071 package (https://
cran.r-project.org/web/packages/e1071)23 in R 3.4.3. 
The model was built based on the training set using 
default parameters (Sigmoid Kernel and 100-fold cross-
validation). Finally, receiver operating characteristic 
(ROC) curve analysis was used to evaluate the 
predictive power of this SVM classifier in the training 
set and validation set (dataset B, excluding the 16 
samples with unknown nature regarding the matastatic 
status). Also, the sensitivity, specificity, positive 
prediction value (PPV), and negative prediction value 
(NPV) were calculated using pROC (version 1.12.1, 
https://cran.r-project.org/web/packages/pROC/index.
html)24 in R 3.4.1.

Construction of a prognostic prediction model

Combined with the clinical prognostic information 
in the training set and the feature genes based on the 
SVM classifier, the optimized set of prognostic gene 
signatures was identified using the Cox proportional-
hazards (Cox-PH) model25, which is based on the 
L1-penalized regularization regression algorithm 
of the penalized package (version 0.9.50, http://
bioconductor.org/packages/penalized/)26 in R 3.4.1. 
The optimized parameter, lambda, in this model was 
obtained by 1,000 cycles of calculation of a cross-
validation likelihood (cvl) algorithm. Subsequently, 
the prognostic prediction model was constructed based 
on the prognostic regression coefficient of the DEGs, 
and the risk score (RS) for each sample was calculated 
as RS = ∑coef DEGs × Exp DEGs. The Coefgene represents 
the prognostic regression coefficient, and Exp DEGs is 
defined as the expression value of the corresponding 
gene. According to the median value of RS, all samples 
in the training set were divided into high-risk and 
low-risk groups. The Kaplan-Meier (K-M) survival 
curve analysis based on the survival package (version 
2.41.1) in R 3.4.1 was used to estimate this model. This 
model was further verified in the validation set of the 
prognostic model (datasets C and D). The workflow for 
this study is shown in Figure 1.

RESULTS

A total of 400 DEGs were identified between the 
metastatic and non-metastatic OS samples based on 

Figure 1 — The workflow of the construction of the prognostic 
prediction model for metastatic osteosarcoma.
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Figure 1 The workflow of the construction of the prognostic prediction model for metastatic 

osteosarcoma. 
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value of the cvl was −101.8146 (Figure 4A). As a 
result, four optimized prognostic gene signatures were 
identified, including ALOX5AP, COL21A1, HLA-
DQB1, and LDHB (Figure 4B, Table 1). According to 
the prognostic regression coefficient of these DEGs, 
the prognostic prediction model was constructed, and 
RS was calculated as RS = (−0.1453) × ExpALOX5AP 
+ (0.0491) × ExpCOL21A1 + (−0.0188 ) × ExpHLA-DQB1 + 
(0.1567) × ExpLDHB. The estimation of the K-M survival 
analysis showed that the overall survival time of the 

set, respectively. Similarly, these evaluation indexes are 
0.847, 0.875, 0.960, 0.889, and 0.917 in the validation 
set, respectively (Figure 3B and 3C). These results 
indicate that this SMV classifier has high accuracy 
when distinguishing metastatic and non-metastatic OS 
samples.

Based on these 46 DEGs, the optimized set of 
prognostic gene signatures was screened by Cox P-H. 
After 1000 cycles of calculation of the cvl algorithm, 
lambda was confirmed as 7.8565, and the maximum 

Figure 2 — Identification and functional characteristics of differentially expressed genres. A. Volcano map. 
Green dots indicate DEGs, and the red horizontal dotted line represents the false discovery rate (FDR) 
<0.05; two red vertical dotted lines represent |log fold change (FC)| >0.5. B. A bidirectional hierarchical 
clustering map based on 400 DEGs. White and black sample bars represent non-metastatic and metastatic 
OS samples, respectively. C. GO and KEGG enrichment analyses of DEGs. The horizontal axis and vertical 
axis represent the gene number and term, respectively; the color and size of the dots indicate the significant 
P-value, and the closer the color is to red, the higher the significance.
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also showed that the low- and high-risk sample pre-
diction is closely associated with the patients’ overall 
survival time in validation set 1 (GSE16091, P = 1.393 

patients was significantly longer in the low-risk group 
compared with the high-risk group (P = 1.720 × 10−3) in 
the training set. Meanwhile, the K-M survival analysis 

Figure 3 — Construction of a metastatic osteosarcoma discriminating classifier. A. Accuracy curve of the 
optimized gene signature using the RFE algorithm. B. Scatter plot (above) and ROC curve (below) based 
on the SVM classifier in the training set. C. Scatter plot (above) and ROC curve (below) based on the SVM 
classifier in the validation set.
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screened, and a metastatic-OS discriminating SMV 
classifier was constructed, which has high accuracy 
when distinguishing metastatic and non-metastatic 
OS samples. Furthermore, four optimized prognostic 
gene signatures (ALOX5AP, COL21A1, HLA-DQB1, 
and LDHB) were screened, based on these 46 DEGs, 
by Cox-PH analysis, and the prognostic prediction 
model for metastatic OS was constructed based on the 
prognostic regression coefficient of these four DEGs 
and possesses a relatively satisfactory prediction ability 
both in the training set and validation set.

The mining of a large amount of genetic data in 
various diseases has been enhanced by the rapid 
technological advances in high-throughput sequencing 
and bioinformatics27. This study integrates the eligible 
expression profile data of OS from the NCBI GEO 
and screened 107 DEGs of metastatic and non-
metastatic OS samples concerning prognosis. Then, the 
optimized 46 DEG signatures were used to establish 
a discriminating SVM classifier that could distinguish 
between metastatic and non-metastatic OS. SVM, 
as a powerful classification tool, is widely applied in 
cancer genomic subtyping or classification28. Due to 
the classification feature of SVM and based on the 

× 10−2) and validation set 2 (GSE39055, P = 3.384 × 
10−2) (Figure 4C–4E). Also, the ROC curve analysis 
revealed that the AUC of this model is 0.929, 0.772, 
and 0.827 in the training set, validation set 1, and 
validation set 2, respectively, indicating that this model 
has a satisfactory prediction ability both in the training 
set and validation set (Figure 4F).

DISCUSSION

In this study, 107 DEGs related to the prognosis of 
metastatic OS were identified based on the univariate 
Cox regression analysis of expression profile data 
from the NCBI GEO. Then, 46 DEGs were further 

Figure 4 — Construction and verification of the prognostic prediction 
model. A. The lambda parametric curves by the cross-validation 
likelihood (cvl) algorithm. The horizontal axis and vertical axis 
represent lambda and vcl, respectively; the intersection of the red 
dotted line represents the maximum value of cvl at −101.8146 when 
lambda was 7.8565. B. Coefficient distribution diagram of the four 
optimized DEGs related to prognosis based on the L1-penalized Cox-
PH regression model. C. K-M survival analysis based on the prognostic 
prediction model in the training set (GSE21257); HR represents the 
hazard ratio. D. K-M survival analysis based on the prognostic 
prediction model in validation set 1 (GSE16091); HR represents 
the hazard ratio. E. K-M survival analysis based on the prognostic 
prediction model in validation set 2 (GSE39055); HR represents the 
hazard ratio. F. ROC curve analysis of the prognostic prediction model 
in the training set (GSE21257), validation set 1 (GSE16091), and 
validation set 2 (GSE39055).

Gene Coef P-value Hazard 
Ratio

95%CI

ALOX5AP −0.1453 0.03236 0.8023 0.518–0.942
COL21A1 0.0491 0.00846 1.4918 1.047–2.350
HLA-DQB1 −0.0188 0.03289 0.8972 0.578–0.933
LDHB 0.1567 0.01301 1.3655 1.192–2.044

Table I. — The four optimized differentially expressed mRNAs 
related to prognosis in metastatic osteosarcoma
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and plays an important role in lysosomal activity and 
autophagy in cancer cells43. Notably, the involvement 
of LDHB in metastasis has been demonstrated in tumor 
metastasis, including hepatocellular carcinoma 44 and 
prostate cancer45. However, the function of LDHB in 
metastatic OS should be further investigated.

CONCLUSIONS

In conclusion, this study discusses the constructed a 
metastatic-OS discriminating classifier and prognostic 
prediction model for metastatic OS, which both 
have high accuracy. Four optimized prognostic gene 
signatures (ALOX5AP, COL21A1, HLA-DQB1, and 
LDHB) may have clinical implications in the prognosis 
of metastatic OS. However, the prognostic significance 
and mechanism of these four genes should be further 
confirmed in metastatic OS.

Consent statement: Not applicable.

Ethics approval: Not applicable.
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