
Many techniques are currently used in an attempt to

regenerate cartilage surfaces in the presence of a

chondral or osteochondral defect. Clinical results

have been mixed and no single treatment has

emerged as being superior. This article reviews the

techniques previously and currently being used and

evidence to support their use.

Keywords : chondral defects ; osteochondral defects ;

chondral repair.

INTRODUCTION

The surgical management of chondral and osteo-

chondral defects (OCD’s) of the articular surface of

the knee joint remains a controversial topic (27).

William Hunter noted, in 1743, that articular carti-

lage has limited capability for repair once dam-

aged (31). Articular cartilage may be lost due to

trauma, osteochondritis dissecans or ostearthritis,

metabolic, haemorrhagic or rheumatological arthri-

tides. Usually trauma or osteochondritis dissecans

will result in a focal lesion but most other types of

joint pathology will result in a more global pattern

of cartilage damage at the joint surface. A discrete

osteochondral lesion will sometimes result in a

fragment of cartilage and underlying bone being

partially or completely separated from the sur-

rounding joint surface. The lesion can sometimes be

repaired by retaining the fragment and fixing it in

situ but if the osteochondral fragment is completely

detached or if it has degenerated to the extent where

it can no longer function as joint surface, modalities

of treatment to repair the defect with other tissue

need to be considered.

The limited spontaneous capacity for repair of

these defects once the fragment has become

detached has driven surgeons to employ many dif-

ferent techniques in an attempt to establish a layer

of soft tissue to take on the function of articular car-

tilage (20). The goal of these treatment modalities

has been to re-create a tissue layer that is effective

in load transmission, long term wear, joint lubrica-

tion and nutrition. 

large loads are placed on articular cartilage and

at times these loads will reach up to 10 times body

weight (33). The joint reaction force results from the

combination of the force of bodyweight and also

the force caused by ligament tension and muscular

contractions around the knee. Any tissues that are

formed in lieu of damaged articular cartilage in an
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osteochondral defect, will need to have sufficient

inherent strength to withstand these loads. not only

does the tissue have to have the inherent strength to

resist these loads but it also needs to be sufficiently

well bonded to the surrounding bone and cartilage

that it does not cleave from those tissues when

loaded.

The wear characteristics of healthy articular car-

tilage are exceptional (23). Attempts to regenerate

tissue in an OCD should therefore be aiming to cre-

ate tissue with similar wear characteristics. This is

the challenge facing surgeons in joint arthroplasty

and also in cartilage repair surgery for OCD.

Healthy articular cartilage has a complex role in

the lubrication of a synovial joint such as the knee.

Boundary, fluid film and mixed forms of lubrication

take place at different phases of the gait cycle. At

heel strike, predominantly boundary lubrication

will exist but there is also squeeze film lubrica-

tion (50). Boundary lubrication involves direct

 contact between joint surfaces coated in the glyco-

protein, lubricin (50) and with surface active

 phospholipids (29) and hyaluronic acid (28). Elasto -

hydro dynamic (and micro-elastohydrodynamic)

lubrication predominate during stance phase

 progressing to boundary, elastohydrodynamic and

weeping lubrication at ‘toe-off’. Hydrodynamic

fluid film predominates during swing phase and

then during prolonged stance, boundary and boost-

ed lubrication are the main types of joint lubrica-

tion (50). Any replacement tissue achieved in an

OCD should be able to recreate these conditions as

closely as possible and be capable of involvement

with these types of joint lubrication. 

Healthy cartilage receives nutrition from diffu-

sion of nutrients in synovial fluid as it is essentially

an avascular tissue. Its porous structure also allows

diffusion of waste products of metabolism to be

removed from the cartilage matrix. The regenerated

tissue should be able to perform a similar role to

support the replacement cartilage tissue and the

existing osteochondral tissue around the graft.

Techniques for chondral repair

The techniques that have previously been

employed in attempts to achieve tissue that meets
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the above requirements include microfracture (54),

drilling of subchondral bone (5,35,54) autologous

chondrocyte implantation (4) osteochondral autograft

and allograft transfer systems (2,47) and abrasion

chondroplasty (19). The results have been mixed (40). 

Abrasion chondroplasty uses a burr to remove

unstable cartilage and cause bleeding of the sub-

chondral bone. The blood clot that forms then

allows blood borne fibroblasts to lay down fibri-

nous tissue to replace the cartilage. Early results

suggested that it was a useful technique for younger

patients with cartilage damage, showing that

50 percent of patients improved (21). This technique

is easy to perform, can be undertaken using a sin-

gle-stage arthroscopic technique but the tissue that

is formed is superficial, lacks adherence to the sub-

chondral bone and therefore is subject to damage

from shear forces with joint movement (1).

Subchondral drilling was described in animal

models initially in 1986 (59) and was first described

in orthopaedic practice in the ankle joint (5).

Drilling generates heat and there is, therefore, a risk

of thermal necrosis and sub-chondral bone necrosis

has been noted following subchondral drilling (35).

Chen et al have recently refuted these findings,

showing that there was actually more osteocyte

death in peri-microfracture lacunae than in peri-

drill hole lacunae in a rabbit model (16).

Microfracture was first described by

Steadman (55) and involves placing multiple 0.5-

1.0 mm holes in the exposed subchondral bone at

the base of the cartilage defect using a sharp pick.

These holes are placed 3-4 mm apart taking care not

to disrupt the integrity of the sub-chondral

plate.This can be performed arthroscopically. The

results from this technique have been shown to cre-

ate at best a hybrid tissue cover of mixed hyaline

and fibrocartilage (55) but the good clinical results

have been reproduced by other authors in other cen-

tres with good to excellent results in 67% and poor

results in only 8% (43). The fibrocartilage may pro-

vide temporary cover of bone with a soft tissue

layer but may not have sufficient loadbearing

capacity to be of value in terms of long term load

transmission to the other joint surface as some have

reported declining function in high-demand patients

after one year (62).
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Experimental studies have shown that patches of

perichondrium and periosteum can be sewn onto an

osteochondral defect and pluripotential cells from

the cambium layer can differentiate into chondro-

cytes and form a ‘hyaline-like’ tissue covering the

defect at follow-up (14,45). Peterson et al subse-

quently investigated the outcome of injecting cul-

tured chondrocytes underneath periosteal patch-

es (46). Cartilage is harvested from the joint with an

arthroscopic technique, chondrocytes are isolated

from the matrix in the laboratory and are then culti-

vated and their numbers increased between 20 and

50 times (46). The second stage requires an arthroto-

my to suture the periosteal patch on to the

 surrounding articular cartilage and inject the chon-

drocytes in situ. This technique of autologous chon-

drcyte implantation (ACI) is expensive but has had

some popularity and has been shown in some stud-

ies to have favourable outcome when compared to

other techniques such as mosaicplasty (6,10). ACI is

technically more difficult than microfracture and

involves two-stage surgery. The tissue created has

been shown to contain hyaline-like cartilage and

chondrocyte-like cells but it is not clear that the re-

created tissue functions in the same manner as artic-

ular cartilage in terms of load distribution. To take

biopsies of adequate size for mechanical testing

would cause chondral damage and therefore is not

possible in a human subject following ACI. The

chondrocyte-like cells may come from the cultivat-

ed chondrocytes injected underneath the periosteal

patch, they may be from the chondrocyte precursors

in the periosteum or from mesenchymal stem cells

from sub-chondral bone bleeding into the

OCD (7,51). Jones and Peterson have also described

the sandwich technique for defects deeper than

8 mm whereby the base of the defect is bone graft-

ed and then covered by a double periosteal layer

and the cultured chondrocytes are then injected

between this double layer (34). 

Saris et al achieved improved structural repair of

chondral surfaces with characterised chondrocyte

implantation (CCI) as assessed by histomorphome-

try and histological evaluation when compared to

microfracture but did not show significant improve-

ment in functional outcome (52). The technique of

CCI uses an autologous chondral cell therapy aimed
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at optimising its biological potency to form stable

cartilage tissue when cultured and transplanted.

Techniques such as this may show superior results

to standard ACI in the longer term.

In an attempt to encourage the growth of

 chondrocyte-like cells in a stable matrix to obtain

hyaline cartilage in a more physiological pattern,

matrix induced ACI (or MACI) was developed (4).

This technique uses cultured chondrocytes, as in

ACI, but implants these cells within a type I/III col-

lagen disc. This can be stabilised with fibrin glue

and has been shown to lead to a stable tissue con-

struct in the original defect on MRI scan as much as

two years later (3).Various types of matrix are avail-

able but most require an arthrotomy for their

implantation. The demand for arthroscopic tech-

niques has driven the development of third genera-

tion types of carrier/matrix which allow arthroscop-

ic implantation. Although only early clinical results

are available, the outcomes appear comparable with

earlier ‘open’ techniques (9). Phase III, multicenter,

randomised clinical trial of the co.don chondros-

phere®, a three-dimensional autologous chondro-

cyte transplantation product is underway, which

will be comparing microfracture in the treatment of

cartilage defects of the knee joint (9).

limited cartilage resurfacing with metal

implants has been described and implants for this

exist. As it involves replacement of deficient carti-

lage with a metal disc, it is of course not cartilage

repair as such. Animal testing in a goat model has

shown that the implants can appear stable on radio -

graphs with normal joint range of motion and no

joint effusion at 4 weeks post operatively (36).

There was however noted to be cartilage damage on

the opposing joint surface (at the tibial plateau)

when the medial femoral condyle was re-surfaced

with a cobalt chromium implant (36). This type of

cartilage damage to the opposing joint surface has

been reported in other animal studies (18). Further

work is required to ensure that this type of proce-

dure will be safe for use in clinical practice.

Osteochondral transplantation or ‘mosaicplasty’

involves taking one or more autografts (full

 thickness bone and cartilage graft) from a ‘non-

weightbearing’ portion of the joint and transferring

it to the area of the osteochondral damage (8). This
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is usually done by taking cylindrical cores of

 cartilage and underlying sub-chondral bone and

impacting them into cylindrical holes drilled into

the base of the lesion. 

This is the only technique which recreates type II

collagen hyaline cartilage in normal cartilage

matrix. This is however obtained at the expense of

removing joint surface elsewhere in the joint. There

is also the issue of the areas in between the cylindri-

cal grafts and the fibro-cartilagenous tissue which

develops here. It is also essential to get the grafts to

fit in at the correct depth to avoid the point loading

which will occur if part of the graft is ‘proud’ of the

surrounding cartilage surface. This will increase

wear rates and secondary cartilage damage. Cell

death at the margins of the graft is also known to

occur, leading to a reduction in graft tissue of as

much as 24 percent (32). Mosaicplasty is best

reserved for small to medium-size defects of less

than 25 mm in diameter (8).

Allograft of osteochondral tissue has also been

used with some success for full thickness cartilage

defects (63) and avoids the problems of donor site

morbidity required with osteochondral autograft.

Studies have shown statistically significant

improvement up to 3 years as measured by several

knee specific scoring systems including IKDC,

Knee Related Quality of life scores, Sport and

Recreation Function Score and SF12 Physical

Component score (42). Overall patient satisfaction

rates of 84% with allograft transplantation have

also been reported (42). Some grafts have done well,

 surviving up to 25 years but equally there is still a

significant rate of early failure (25). Equally good

results for allograft in terms of imaging characteris-

tics, biomechanical properties and histology have

been achieved in animal (dog) models when com-

pared to autograft (24). There are however the issues

of greater cost and lower availability of allograft

tissues for implantation but using allograft does

avoid the potential for donor site morbidity (11).

Cartilage regeneration with type II collagen and

a highly sulfated proteoglycan matrix has been the

goal of many of the treatments for full thickness

cartilage loss but this has not been reliably achieved

with histological specimens often revealing

 ‘hyaline-like’ cartilage and fibro-cartilage cover of
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defects on follow-up biopsies (40). It is this focus on

developing techniques which can reliably produce

healthy chondrocytes and type II collagen in an

extra-cellular matrix which has characteristics

which allow adequate load transmission and

involvement in joint lubrication and nutrition that

has driven interest and research in tissue engineer-

ing techniques and led to the development of

 synthetic scaffolds for the purpose of cartilage

repair. The basic concepts of tissue engineering

 dictate that for new tissues to form and remain

viable, cells need both a stable scaffold to grow in

and the appropriate biological signals to determine

cellular differentiation and tissue type. The goal of

scaffold replacement for OCD’s is that bleeding

into the scaffold will allow pluri-potential

 mesenchymal marrow cells to migrate into the

implant. Responding to inductive biological signals

from the surrounding injured bone and cartilage,

collagen deposition and cellular infiltration and

 differentiation will allow the formation of hyaline

cartilage within the surface layer of the ‘plug’ and

ossification of the deep ‘bone’ layer of the implant.

Advances in tissue engineering have led to

improvements in biomaterials including natural and

synthetic hydrogel polymers which have been used

as scaffolds for the purpose of cartilage repair in

chondral and osteochondral defects (60). 

Currently research is focusing on manipulating

the material properties of the scaffold implant in

order to regenerate tissue that is as physiological as

possible. As more research is published, it becomes

clear that the factors such as the Young’s modulus

(stiffness) of the implant, the relative porosity (for

nutrition of cellular components and removal of

waste products of local cellular metabolism) and

ease of degradation of the scaffold material have

both quantitative and qualitative impact on the

 tissue that regenerates within the scaffold (49). For

osteochondral defects, the challenge in scaffold

engineering remains focused on encouraging the

growth of osseous tissue at the base of the defect

firmly attached to cartilaginous tissue at the most

superficial part. The solution has been the develop-

ment of biphasic implants with two adherent layers.

It has become apparent that the porosity of the

implant and therefore the stiffness of the implant
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can be manipulated to determine the tissue type that

grows within it (38,49,64). It is therefore possible to

encourage cartilaginous tissue differentiation in the

surface layer of the implant and osseous tissue dif-

ferentiation in the deep layer.

TruFit© CB plugs (Smith and nephew) are one

example of commercially available and licensed,

synthetic resorbable biphasic implants made of a

patented composite hydrophilic polymer composed

of polylactide co-glycolide, calcium sulphate and

poly-glycolide fibres. The TruFit© CB plug is

licensed for chondral and osteochondral defects in

Europe but only for bone void filling in the

USA (61). It is designed as a cylindrical scaffold

with two layers, one with a similar trabecular

 network to cancellous bone and a superficial 3 mm

layer designed to simulate the matrix of articular

cartilage. The plugs are available in three different

diameters of 7 mm, 9 mm and 11 mm. Clinically, a

cylindrical hole of 18 mm depth is drilled into the

osteochondral defect (usually in a femoral condyle)

and a plug of the same depth undergoes a press fit

into the defect. Osteo-progenitor cells can migrate

(from surrounding osseous bleeding) into the basal

layer with resultant ossification in the basal layer.

Histology from a goat model has shown osseo -

integration of the deep part of the implant, with

resorption of the implant material and ‘hyaline-like’

cartilage formation in the surface layer (61). Authors

have reported the potential for cyst formation and

delayed incorporation at the site of plug implanta-

tion which may persist for 24 months or more (12). 

Increased interest in tissue engineering tech-

niques has driven a significant increase in the num-

ber of materials and implants being assessed for use

as a scaffold for the repair of cartilage in chondral

and osteochondral defects. large numbers of

resorbable hydrogel polymers such as polylactide

co-glycolide (PlG), similar to the TruFit CB plug,

have been assessed in recent years (17,26,44,53). Kon

et al showed that a composite biomaterial scaffold

composed of hydroxyapatite nucleated type I colla-

gen fibrils was used in 13 patients with a significant

improvement in outcome scores but incomplete

integration on MRI in up to 47% of patients at

6 months follow up (37). Other materials used as

scaffolds include medical grade polycaprolactone

(often with Tricalcium phosphate and collagen

mesh), porous tantalum and carbon fiber (13,41,56).

Cellulose sponges have also been used in labora -

tory studies but have not been successful as the

matrix formed has been soft and unlikely to have

withstood loading in vivo (48). Allogenic cartilage

has also been harvested, shattered and de-cellular-

ized and then reconstituted to form a neo-cartilage-

nous scaffold for cartilage repair but this has been

confined to laboratory and animal studies to date

(65). Recent studies have reported the use of silk-

worm and  spider silk scaffolds for use as a scaffold

support for chondrocytes in cartilage repair (22). A

wide range of cellular pretreatment of scaffolds has

been attempted using ACI techniques, autograft of

 cultured chondrocytes, allograft chondrocytes,

 mesenchymal stem cells and the addition of

 biological and biochemical factors such as fibro -

blast growth factor, platelet derived growth factor,

bone morphogenetic protein (rhBMP 2) and

hydroxyappatite (15,39,57,58,60). 

The ultimate aim in ‘cartilage repair’ surgery is

to achieve type II collagen in a stable tissue matrix

which is capable of performing as load bearing

articular material under physiological loading con-

ditions. The techniques described above have all

been used in the treatment of full thickness cartilage

loss but many have simply delayed the need for

more definitive treatment, which often requires par-

tial or total joint arthroplasty. The current focus is

on developing techniques which lead to long lasting

cartilage repair which will obviate the need for joint

replacement. 

At this stage, many of the techniques for

 chondral repair have been used with some success.

none have consistently shown superiority in clini-

cal trials and as such, no recommendation regarding

treatment can be made at this time. High-quality

clinical trials are needed to evaluate new treatments

and more research is needed but with new tissue

engineering techniques, the prospect of developing

long lasting cartilage repair tissue with good wear

characteristics that is capable of involvement in

load bearing, nutrition and lubrication of the joint is

increasingly realistic.
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