Patellar instability - An update

Lars Blønd

From the Zealand University Hospital, Køge, Department of Orthopedics, Arthroscopic Section, Køge, Denmark and Aleris-Hamlet Parken Hospital, Copenhagen, Denmark

INTRODUCTION

This is a current concept, non systematic review, on the topic of patellofemoral (PF) instability purposing to highlight, reflect and in cooperate

This review is a current concept on the topic of patellofemoral instability purposing to highlight, reflect and in cooperate both recent and old important findings regarding the patellofemoral joint, a field that is evolving very fast, and where there is a huge lack of consensus. The evidence in this medical field is to a large degree based on the combination of anatomy, biomechanics, pathomorphology, epidemiology, cohort studies and case controlled studies, however a number of randomized studies do exist. A computerised literature search was performed on PubMed, ScienceDirect, ISI Web of Knowledge, Google Scholar and Cochrane Central Register using the keywords patella instability, patella dislocation and patellofemoral, and this was giving more than 12,000 publications and here among 1,400 are from the past decade. Nevertheless recent years studies have clearly demonstrated that the cohort of patellofemoral instability patients is inhomogeneous, and consequently most previous randomised studies do exist. This review is based on Prisma criteria, as this would foreclose some studies that helps to provide a snapshot of where we stand today and the limitation is therefore selection bias and

No benefits or funds were received in support of this study

Contributions: Lars Blønd has done manuscript writing and references search. The authors report no conflict of interests.

Keywords: Patellar instability, Trochlear Dysplasia, Patellofemoral, Trochleoplasty, Medial patellofemoral ligament reconstruction

selective reporting within studies. The eligibility criteria is based on a subjective condensation of studies related to new pathomorphologic and biomechanical understanding of the patellofemoral joint. Hopefully this provides a better understanding of this very complex topic and inspires to further studies. The past decades numerous studies have significantly contributed to our understanding of both the symptomatology and pathomorphology of this disorder. Consequently, treatment strategies are luckily changing, because this is a field where patients have experienced non-optimal, repeated surgical procedures and also neglect to do anything. Generally patellofemoral instabilities can be regarded as a continuum, ranging from only anterior knee pain without any symptoms of instability, through subluxations with giving-way sensations, then episodic dislocations, then more severe instability where the patella habitually dislocates with every flexion, and right up to rare cases where the patella is permanently dislocated and never relocates into the trochlear groove. A true patella dislocation is when the patient can report that the kneecap either visibly “popped” out of joint or that it required reduction.

Presence

The incidence of patella dislocations varies between 2.3 and 77 per 100,000 person-years. The highest incidence is in the age group 15-19 years and among the athletically active - about half of the cases occurs during athletic activity (5,7,120). A family history is present in 9-35% of patients (5,96,162). In about one third of the cases the disorder is bilateral (1). Routine Magnetic Resonance Imaging MRI emergency room scans of swollen knees of patients who had suffered a twisting injury, demonstrated signs that 16% had had patellar dislocation, which indicates that the disorder is under-reported (58). An unknown number of patients with patella redislocations fail for various reasons to see a physician.

Mechanism Of Trauma

The movement pattern of the patellar dislocation corresponds to the pattern we know from the ante-rior cruciate ligament injury - a slightly flexed knee combined with slight internal rotation and valgus forces, typically with the foot fixed at the surface (121). In some patients the dislocation event is triggered simply by ordinary everyday activities, such as walking on uneven or slippery surfaces, but most frequently it happens during extraordinarily rapid and unexpected changes of direction during such as in sports (162). In about 7% the dislocation is caused by a direct blunt trauma to the patella (5).

Biomechanics & Risk Factors

The patellofemoral joint is biomechanically one of the most complex of the body’s articulations, with osseous, ligamentous and dynamic factors all influencing patellar stability. The cause of PF instability is not fully understood. It appears to be multifactorial, a consequence of abnormalities in both passive and active patellar stabilisers. Recent studies have focused on some of these factors and confirmed that trochlear dysplasia, patella alta, tibia tubercle-trochlear groove distance (TT-TG) and tibial tubercle rotational angle (TTRA) (108) are the ones of most importance (12,31,40,8,91,92,107,118,126,168). Factors such as increased femoral anteversion (42,45,187), increased tibial internal rotation, tibial tubercle-posterior cruciate ligament distance (TT-PCL) and valgus may also be of importance (3,147). Frequently a combination of these predisposing biomechanical factors are present, making it a complex decision to decide which of any abnormalities should be addressed to achieve functional correction. Lewallen et al. (91,92) found a 5-year recurrence of 70 % in patients younger than 25 years having both trochlear dysplasia and patella alta, where it as only 27% in patients without these abnormalities. Looking at age as a factor, the studies showed that the risk of recurrence was decreased by 8% for each additional year of age. Jaquith and Parikh (78) used multivariant analysis and by combining trochlear dysplasia, a history of contralateral dislocation, open physis and severe patella alta, a 88.2 % risk of redislocation was observed. Trochlear dysplasia means a shallow, flat or even a convex groove in the trochlea, resulting in a lack of osseous stability to the patella, probably linked to some hereditary
factors (5,29,37,39,104,109). Today trochlear dysplasia is regarded as the single most important factor for patella instability and the prevalence of trochlear dysplasia is found to be between 35.7% and 96% in patients with patella instability compared to 3-4% among asymptomatics (30,40,86,91,168). Steensen et al. in a retrospective review (168) found trochlear dysplasia was present among 68.3% of patients having recurrent patella instability and this was seen among 5.8% in the a control group with no history of patellar dislocation. In a similar study by Jaquith and Parikh (78) among children and adolescents with first time patellar dislocation found a 55.8% recurrence rate among those having trochlear dysplasia, compared with a 23.5% recurrence rate among those without trochlear dysplasia. The trochlear dysplasia is mainly seen in the proximal part of trochlea and several authors have classified the abnormal configuration. See figure 1. The first classification by Dejour et al. is based on X-rays. The earlier classification identified three groups, and this was later refined to include four groups (39,173). The Dejour classification has been widely used. However Nelitz et al. (113) and Lippacher et al. (93) found poor relation between objective parameters of trochlear dysplasia and the four grade classification system, but by simplifying the classification to just distinguish between low (Dejour grade A) or high (Dejour grade B,C or D) degrees of trochlear dysplasia, the intraobserver and interobserver agreement were found to be good to excellent. Howell et al. (74) used a 4 group MRI classification with either no dysplasia, a shallow but concave trochlea, a flat trochlea or a convex trochlea. Steensen et al. (168) further simplified this to include only three groups, since he considered that patients with only a slightly shallow groove did not have dysplasia. One of the objective to have a classification system has been the importance of the trochlear bump, presented in Dejour type B and D. Some have advocated to do only trochleoplasties in type B or D trochlear dysplasia. In a follow-up study after trochleoplasty by Fucentese et al. (61) found dysplasia types B and D benefited more from surgery than types A and C, while others have not been able to verify this finding. Biedert and Bachmann (16) have found specific characteristics for trochlear dysplasia and based on the type of pathologic configuration they classified the type of dysplasia as either decreased depth in the center of the trochlea and was found in 83% in their study group or decreased height of the lateral facet found in 17%. Still there is no consensus of which classification is most specific and reproducible. See figure 2. Patella alta is the second most important biomechanical factor, and since the patella is high-riding it is proximal to the trochlear groove. See figure 3. During knee flexion there is a delay before bony engagement of the patella in the trochlea is achieved, and during this delay lateral forces acting on the patella can make it dislocate. Steensen et al. (168) found using the Insall-Salvati ratio that patella alta was seen among 60.0% of patients having recurrent patella instability and this was seen among 20.8% in a control group without dislocations. Lewallen et al. (92) correspondingly found a 47% risk of recurrence after first time patellar dislocation having patella alta. An important message is that trochlear dysplasia as well as patella alta have been associated with development of patellofemoral arthritis (77,79,106,170,171,175).

Fig. 1. — Example of a patient troubled by recurrent patella instability and MRI demonstrate severe trochlear dysplasia with a concave trochlear and a lateralized patella.

Anatomy & Pathomorphology

The patella, being a sesamoid bone, is embedded in the patellar tendon (ligament). Its main purpose is to magnify the leverage that the tendon can exert on the femur by increasing the angle at which it acts. When the patella dislocates, the medial ligamentous structures - of which the medial patellofemoral ligament (MPFL) has been identified as the most important, since it accounts for 60% of the medial restraining forces - are damaged (41,56,80,134). In an anatomical study, Mochizuki et al. (105) demonstrated, contrary to previous assumptions that the MPFL structures only insert on the medial proximal part of the patella, that the ligament has a much more fan like structure. The main fibers often insert into the distal portion of the quadriceps tendon, more specifically on the part belonging to the vastus intermedius. This was later been confirmed by others (62,136). This finding consequently inspired a new surgical technique for reconstruction of the medial restraining structure, now referred to as the medial quadriceps tendon-femoral ligament reconstruction (MQTFL) (62).

Fig. 2. — Comparable to figure 1, this is an example of a patient troubled by recurrent patella instability and MRI demonstrate trochlear dysplasia. This case demonstrates the difficulties classifying the dysplasia, and to judge when ether the trochlea is concave, flat or convex. The bone contour is clearly concave, most of the cartilage part of the trochlea is flat, however the articulation more laterally with the patella is convex.

Fig. 3. — This is both a sagital view and axial view of the same right knee, demonstrating combined Patella Alta and trochlear dysplasia. The patient was troubled by recurrent patella instability and were successfully treated by arthroscopic deepening trochleoplasty and MPFL reconstruction, alternatively a tibial tubercle distalisation could be considered.
In this technique the most proximal part of the fan shaped medial patellofemoral ligament is reinforced. Sometimes when the patella dislocates and relocates, the shear forces between the patella and the lateral part of the trochlear can cause visible osteochondral damage, and this has been reported in 39 % to 96 % of patients (51,72,120,124,167). In patients with recurrent patellar dislocations, cartilage changes are more pronounced compared to patient with first time patella dislocations (123). The importance of hypermobility for patellar instability is not yet clear and in a study by Smith et al. (162) no increased instability symptoms among the hypermobile were observed. In patients having trochlear dysplasia, a typical finding is increased mobility during the glide test - where the patella is moved from side to side - and this can mistakenly be interpreted as hypermobility. For a long time the importance of femoral internal torsion to anterior knee pain and patellofemoral instability has been underestimated, but the causative relation is getting both more accepted and focused (14,43,116,131,186). Diederichs et al. (45) found a 1.56-fold higher mean femoral anteversion in patients with a history of patellofemoral instability compared with controls. Increased femoral anteversion results in internal rotation of femur distally. The result is increased lateral vector forces acting on the patella relative to the trochlear groove, leading to either patella instability, anterior knee pain or increased wear of the cartilage in the PF joint. Increased femoral anteversion results in internal rotation of the femur distally. The result is increased lateral vector forces acting on the patella relative to the trochlear groove, leading to either patella instability, anterior knee pain or increased wear of the cartilage in the PF joint. The increased anteversion of the femur is sometimes combined with external rotation of the tibia, termed miserable malalignment syndrome (23,131). It is important to notice that Staheli (166) found that anteversion is gradually reduced from childhood to adult. The importance of patellar morphology and patella tilt is debatable and the differences between the normal population and patients having patellar instability, could be a consequence of different morphology of the trochlear configuration. In the normal population, a Wiberg type A patella is present in 16.1% of subjects, a type B in 80% and a type C in 12.9% (148). In a case series of patients with objective patellar instability, type A patella was present in 15.7% of cases, type B in 60.7% and type C in 23.6% of cases and also patellar shape type C was found more frequent in knees with trochlear dysplasia (130). Fucentese et al. (60) investigated patellar morphology in trochlear dysplasia, and the key morphologic change of the patella was a decreased medial facet length. Correspondingly Panni et al. (130) found significantly more Wiberg type C patella in patients with underlying trochlear dysplasia. Patellar tilt is influenced by different factors depending whether it is measured in static or dynamic conditions. When the quadriceps is relaxed, the tilt results from the bony surfaces morphology. Nove-Josserand et al. (125) demonstrated that the more severe the trochlear dysplasia, the greater the patellar tilt.

History & Physical Examination

Some patients clearly describe that the ‘kneecap jumps out its socket’, while others simply feel that the knee fails without being able to relate it to any looseness of the patella. When a dislocation occurs, some patients need help to reduce the patella either locally or at an emergency department. In other cases patients manages to bump the patella while extending the knee, and thereby the patella goes back in place, with a spontaneous repositioning eventually occurring with a ‘clunk’. First-time patellar dislocation is followed by acute pain, swelling of the knee and effusion, but in more chronic cases this is not necessarily the case. A typical finding is tenderness of medial structures and regularly there is also tenderness lateral to the patella. Even in the absence of recurrent instability, patients who sustain a patellar dislocation, or even subluxations, may develop a number of significant problems, including persistent knee pain, functional limitation, decreased athletic performance, and typically they avoid torsional activities (162). The direction of the patellofemoral instability is almost always lateral, although rare cases of medial dislocation have been reported to occur secondary to iatrogenic causes (143). Assessment of the knee in the chronic patellar...
dislocator is typically performed in a quieter phase. Examination should include standing, walking, sitting with the knee bent, and lying down. A large number of test exist (90,161,181). In a clinical trial of ten patellar-unstable knees assessed by five members of the International Patellofemoral Study Group, poor inter-observer reliability was found for the majority of the physical tests, with only the assessments of patellofemoral crepitus, foot arch position and the J-sign achieving fair to moderate agreement (159). The most commonly used test is the patella apprehension test, where the patella is gently passively lateralised by placing the thumb on the medial patella facet with the knee resting in extension. The test is considered positive if the patient resists the action by contracting the quadriceps, and/or recognises the feeling that the patella is going out. The test is repeated in different degrees of flexion, and notice is paid to the angle at which the patella is stabilised by the trochlea (159). In some severe cases of instability, the examiner is not able to keep the patella contained in the trochlear groove while the patient actively contracts the quadriceps. This indicates that some major lateral vector forces are affecting the tracking. In these severe cases it is mandatory for the surgery to be based on the anatomical abnormalities, accepting that an isolated MPFL reconstruction will not provide long lasting stability unless the bony abnormalities are simultaneous corrected. Q-angle has previously been used frequently in the evaluation of the patella, but lately inconsistency has been highlighted regarding the correlation between the Q-angle and the TT-TG distance (36,43,95,150). Patella alta might be noticed by inspection. If the patient sits and bends the knee to 90 degrees, a so called camel-sign may be observed, since the Hoffa fat pad and the patella are both protruding. With the patient in a prone position, the greater trochanter is palpated in its most lateral position, which reflects a horizontal femoral neck axis. With the knee bent to 90 degrees, the angle between the longitudinal axis of the leg and a vertical line represents femoral torsion (140). Several scoring systems are regularly used in articles to interpret the results after patellar stabilising procedures (107). The most popular is the Kujala score (85) developed in a mixed group of patients with patellofemoral problems. Lately two new patient-related scoring systems specific to patellar instability have been published, and offer us instruments to build greater scientific soundness for comparison of different treatments. The Norwich score is a self-administered 19-item questionnaire to assess perceived patellar instability (163). The Banff Patella Instability Instrument is a 31-item questionnaire developed and validated using the COSMIN guidelines (68). Those questionnaire can also advantageously be used by the surgeon to evaluated the level of discomfort the patient experience.

Imaging

Traditionally X-rays have been used for assessing the patella, and many measurements have been based on X-rays. However, today Computer Tomography (CT) scans and MRI scans have supplanted many of these, and new measurements are taking over. X-rays, however, can still be useful. This applies to the assessment of acute patellar dislocation, where anteroposterior, lateral and axial views still are recommended for detecting osteochondral fractures and for trochlear dysplasia screening. The Merchant view - also called the tangential view, axial view, skyline view or sunrise view - has been very popular for evaluation of the patellofemoral joint. However, since the recording is done in 30-45 degrees of flexion the more distal part of the trochlear groove is visualized, and it is therefore not a sufficient screening tool for trochlear dysplasia, since subtle patellar tracking abnormalities are localized to the first 0-30 degrees of knee flexion (142). See figure 4. The tangential view together with the lateral view can be used for evaluation of patellar configuration and patella tilt (48). The lateral view is an effective screening tool for trochlear dysplasia (63). Ultrasound scans can also be advantageously used to detect trochlear dysplasia (119,178). See figure 5. The presence or exclusion of trochlear dysplasia is important for its prognostic value (91,92). MRI gives the most reliable evaluation of the patellofemoral joint and today, operative planning for patella instability should not be based on clinical examination only, but should include the pathoanatomic findings from MRI and/or CT scans. In the more subacute
setting, the typical MRI findings following a patella dislocation include bone oedema in the anterolateral part of the lateral condyle and at the medial patella site, and also eventual tears of the medial stabilisers can be localized (31,44,52,65,141).

Radiology in relation to patellar instability has developed considerably over the past decade. In a study by Charles et al. (31) a large number of well known radiologic parameters were found to be significantly different between those with recurrent patellar instability and normal knees. Among many described radiological parameters the following have been found to be of increasing importance:

Galland et al. (63) called it the gradient of the lateral slope, the one that Carrillon et al. (28) later defined as the lateral trochlear inclination angle which is the angle formed between the plane of the lateral trochlear facet subchondral bone and a tangential line through the posterior femoral condyles, and considered an angle of less than 11 degrees as indicative for trochlear dysplasia. The angle indirectly express how much stability the lateral trochlea facet provides to the patella and has been suggested as the single most important biomechanical index associated with trochlear dysplasia (49), since it is very closely related to the osseous stability. See figure 6.

Trochlea asymmetry is a relative new measurement that has helped to explain the pathology behind trochlear dysplasia and explain how TT-TG distance is influenced. The asymmetry is the ratio of medial trochlear facet width to lateral trochlear facet width and measured in the axial plane. A ratio of less than 0.4 is considered abnormal and indicates trochlear dysplasia (135).

Anterior posterior measurements as a method to depict between heightened trochlear floor or decreased inclination of the lateral facet of the trochlea is another important way to describe trochlear dysplasia (16). The trochlear depth can also be measured on true lateral x-rays as described by Malghem and Maldague (99) and by MRI as described by Pfirrmann et al. (135). A depth less than 3 mm is considered to be trochlear dysplasia.

Fig. 4. — This illustrate X-ray skyline view and MRI of the same knee. The x-ray seems to demonstrate no trochlear dysplasia, contrary to the MRI finding trochlear dysplasia.

Fig. 5. — Example of a patient troubled by recurrent patella instability and having trochlear dysplasia. Ultrasound examination before and after arthroscopic deepening trochleoplasty. See figure 9.
Biedert et al. (16) presented the central height and defined it as the lowest point of the trochlea compared to the width of the femoral condyle and expressed as a percentage of the width. They also defined the medial condyle height as the height of the medial condyle compared to the width of the femoral condyle and expressed as a percentage of the width. This depicted and differentiated two types of trochlear dysplasia: Increased height in the center, and decreased inclination of the lateral facet of the trochlea.

The sulcus angle was originally defined by Brattstrom on X-rays. This is the angle formed by the intersection of the medial and lateral trochlear facets in the transverse plane (22), and since then it has been widely used as a measurement for the geometry of the trochlea. The sulcus angle decreases from proximal to distal (59,101) and also the angle diverges between cartilage or bone (152), and through the literature various measurement methods have been used on CT scans and MRI scans, but no consensus exists. These aspects makes comparison between different studies difficult.

Patella alta can be evaluated via X-rays, MRI and CT scans, and several methods exist. The most widely used are the Insall-Salvati ratio (76) or the Caton-Dechamps index (30), and if those are more than 1.2 this characterises patella alta. The patellotrochlea index described by Biedert and Albrecht (15), is strongly recommended to determine the presence of alta, as it is the only measure that is representative of the true pathoanatomical problem, describing the position of the articular surface of the patella in relation to the trochlear cartilage. If the overlap is less than 12.5% having the knee in 0 degrees of flexion, this is considered as patella alta., and when the knee is flexed the overlap increases the TT-TG distance is for many surgeons a popular measurement, and have been used to guide tibial tubercle osteotomy, especially if the distance is higher than a threshold of 20 mm. The TT-TG is assessed on axial views using either CT scans (141) or MRI scans with superimposed cuts between the most anterior point of the tibial tuberosity and through the proximal trochlea. It is defined by Dejour et al. (40) as the first cut with cartilage, identified by a slight condensation of the lateral facet and by the shape of the notch, which is rounded and looks like a Roman arch. It is called the “reference cut.” In most recent studies. TT-TG

Fig. 6. — MRI demonstrating both a knee without patella instability at left, with a normal lateral trochlear inclination angle at approximately 18 degrees, and at right a knee with patella instability and a low trochlear inclination angle at approximately -1 degree.
TT-PCL as defined by Seitlinger et al., (147) more specifically define the degree of external placement of the tibial tubercle (3,67). See figure 7.

In cases with clinical suspicion of rotational deformities, the angle of femoral anteverision should be evaluated on either CT or MRI. This is the angle between the condylar axis and the axis of the femoral neck. Although several methods exist, the method using a line parallel to the posterior femoral condyles is regarded as the standard method (42,45,50,131). As the standard deviation from the normal value (24˚) is 17˚, the CT scan alone cannot be used to decide about performing a torsional femoral osteotomy. See figure 8. Knee torsion is measured by superimposition of a line along the posterior cortex of the proximal tibia section on the posterior condylar axes on the distal femur section, while tibia rotation is the the angle between the proximal and distal tibia (45,131).

Patella tilt refers to the abnormal position of the patella in relation to the trochlear groove and is the result of a complex interplay of factors,
brace for 2-6 weeks, and full weight bearing, may promote healing of the medial ligamentous structures, but evidence for bracing is lacking (97). Once the acute inflammation has subsided, physical therapy can be helpful to reduce swelling, improve range of motion and muscle strength, stabilise patellofemoral tracking, regain proprioception of the knee, and normalise the gait pattern. However the evidence is lacking that physiotherapy prevents recurrence (158,160). The reported rate of redislocation after first time patellar dislocation varies from 14% to 44% (24,34,66,122,153). However some patients without redislocations continue to have symptoms of instability (91,97). For those patients troubled by recurrent patellar instability, a rehabilitation program consisting of some months of physiotherapy, guided exercises for the quadriceps and gluteus muscles, core stability, balance training, and eventually including stabilising tape and neuromuscular electrical stimulation, should be tried. Patellar stabilising braces are frequently used as an adjunct to rehabilitation, and an unknown number of patients describe as positive either a mechanical or a psychological effect, though some may still experience dislocation wearing a brace (2).

Becher et al. (10) demonstrated improvements of several radiographic parameters by using a dynamic realignment patella brace in patient troubled by patellofemoral instability.

Operative Treatment

In a meta-analysis focusing on various non-operative treatments versus various operative treatments in first time patellar dislocators, a significantly reduced rate of recurrence was found, but for those operated upon a significantly increased risk of osteoarthritis was observed (164). Two randomised studies have found significant superiority of reconstruction of the MPFL in terms of less recurrence and better Kujala score compared to conservative treatment (17,25). None of those studies comparing non-operative versus operative treatment have tried to take account for predisposing factors. In a recent review from Song et al. (165) comparing surgical methods they have
Patellar instability - an update

The patella are reduced, and the tibial tubercle rotational angle (TTRA) is normalized and the tibia tubercle - trochlear groove (TT-TG) distance is reduced. The operation comes in several varieties, with the most common including the Elmslie-Trillat, Fulkerson, Roux-Goldthwait and Hauser procedures.

The success rate in terms of instability and functional outcome is well documented, but for the long term outcome there seems to be declining results in the second decade with pain and osteoarthritis in more than 50% of the cases and a number of patients continues to have instability symptoms (27,110,111,154,183). Payne et al. (133) found, in a systematic review of 19 studies of tibial tubercle osteotomy, a complication rate of 4.6%. The most devastating complication was nonunion of the osteotomy site, and this was seen more frequently in procedures where the tibial tubercle was completely detached. The tibial tubercle osteotomies had previously been used without specific notice of any anatomical findings, and this could theoretically explain unsatisfactory long-term results. Using a more pathoanatomic approach with a rigorous selection of patients having a TT-TG distance above 15 mm, good results have been demonstrated by Tecklenburg et al. in a 38 month follow-up and by Koëter et al. in a 24 month follow-up (84,174). In cases with a TT-TG distance above 20 mm, medialisation of the tibial tubercle should be considered, although if the abnormality is caused by a trochlear asymmetry as part of trochlear dysplasia, then a deepening trochleoplasty should be considered. It is difficult to balance a tennis ball on a football (citation Simon Donell).

Distalisation Of The Patella

In cases where patella alta is the main pathomorphology for the instability, a distalisation of the tibial tubercle or the ligamentum patellae [patellar tendon] can correct the biomechanical abnormality by bringing the patella earlier into the trochlear groove, and thereby normalising the osseous stability. In a systematic review of distalisation procedures in patients having recurrent patellar instability and patella alta, satisfactory outcomes following distalisation was found (98).
patients undergoing MPFL reconstruction, that 30% were having pain at the medial epicondyle, and 43% were still experiencing subluxations or re-dislocation. In patients with more pronounced trochlear dysplasia, less satisfactory results have been observed. Wagner et al. (184) observed no significant outcome improvement after MPFL reconstruction among those with severe trochlear dysplasia. Similarly, Hopper et al. (73) observed a 100% re-dislocation rate in his subgroup of patients with recurrent patellar dislocation. Kita et al. (81) observed that severe trochlear dysplasia was the most important predictor of residual patellofemoral instability after isolated MPFL reconstruction. Interestingly, Howell et al reported excellent results in a case series of 219 knees having MPFL reconstructions, perhaps based on the fact that patients with severe trochlear dysplasia and patella alta were excluded since they had different surgery.

In patients with open growth plates the drilling of the femur bone tunnels can potentially damage the physis and studies have demonstrated that going distally from the physis is reasonably safe (64,80,87,112,151). As an alternative to a bone fixation a soft tissue fixation can be used.

Trochleoplasty

Patellofemoral instabilities arising from trochlea dysplasia are increasingly treated with a surgical technique aimed at restoring normal anatomy (69). Today, when talking about trochleoplasty techniques, it is mostly the deepening trochleoplasty that is referred to, while elevating trochleoplasty is considered more or less obsolete, since the pressure in the patellofemoral joint increases, followed by pain and secondary arthritis. Several techniques have been described and currently the most common techniques are the ones from Dejour and Bereiter. However, the arthroscopic trochleoplasty, a less invasive variant from the Bereiter technique, is getting increasingly more widespread (18-21,39,103,117,127). See Figure 9. In general, all of these techniques unload the compressive forces in the patellofemoral joint, and re-establish osseous stability to the patella. With the trochleoplasty procedure the new groove can be

Benoit et al. (11) found excellent results in a 13.5 year follow-up of eight young patients with a mean age of 10.3 years. Others have confirmed these satisfactory results in medium-term follow-up (100,102,137). Mayer et al. (102) included patellar tendon tenodesis in order to reduce the increased mobility in the coronal plane, caused by the long patellar tendon length. Caution against over-correcting when performing a distalisation should be emphasised, since this can result in a patella baja that eventually leads to pain. Fabricant et al found that reconstruction of the medial patellofemoral ligament itself significantly reduced the patella height, meaning that in mild cases of patella alta no additional distalisation of the tibial tubercle may be needed (54). Moreover if the distalisation is combined with reconstruction of the medial patellofemoral ligament, the risk of overcorrection may be increased compared to distalisation only.

Reconstruction Of The Medial Ligamentous Structures

The purpose of these reconstruction procedures is to reinforce the medial ligaments - the MPFL (medial patello-femoral ligament), the MQTFL (medial quadriceps tendon-femoral ligament) or the MPTL (medial patellotibial ligament) - and thereby provide ligamentous stability to the patella. Today, MPFL reconstructions are perhaps the most common stabilising procedure for the unstable patella but, as explained below, it is not a panacea for all patellar instabilities. Single- and double-bundle techniques and several types of graft material have been used - autologous gracilis-tendon, semitendinosus-tendon, quadriceps-tendon or adductor-tendon, and, as an alternative, also allograft or synthetic material (145,156,169,188) and no techniques is considered to represent the golden standard. Short- and long-term results after MPFL reconstruction are satisfactory in terms of both stability and functionality (53,74,94). Shah et al. found in a review a complication rate of 26.1 % after the procedure, with stiffness as the most common complication, followed by re-dislocation, anterior knee pain and patellar fracture (132,149). Enderlein et al. (53) found, in a group of 240
lateralised 5-10 mm, wherein the TT-TG distance is reduced proportionally (24,126,146). Recent studies have supplemented the trochleoplasty with reconstruction of the MPFL, since this adds stability from extension to the first degrees of flexion until the patella has engaged the trochlea (9,19,114,115,117,126). Today nearly 20 case series of trochleoplasty have demonstrated good short to midterms results with high knee scores and rates of redislocation close to zero (9,19,38,82,83,115,117,127,138,139,146,177,180,182). One concern has been lack of healing of the trochlea cartilage, but yet no reports on this. Next concerns has been raised for long term consequences of trochleoplasty for development of arthritis, and a study from Rouanet et al. (139) with a mean follow-up at 15 years found that 53% of patients experienced occasional pain and 20 cases out of 34 cases had > Iwano 2 radiographic osteoarthritis. What has to be taken in to account is that trochlear dysplasia it selves predispose to arthritis (171,175) and furthermore 17 patients in that study had additional tibial tubercle osteotomies, a procedure that is also recognized to be associated with arthritis (27,55,110). So to what degree these to opposite factors contribute to the development of arthritis should be further elucidated by prospective studies. Degenerative cartilage changes in the trochlea, have been considered as a contraindication for the trochleoplasty procedure. However Neumann et al. (117) found significantly improvement in knee scores after combined trochleoplasty and MPFL surgery and the results for the subgroup containing 17 patients having preoperatively degenerative changes in the trochlea, where equivalent to the group of patients without degenerative changes. In rare trochleoplasty cases, due to a flatt patella a subsequent patella closing wedge osteotomy may be needed in order to achieve congruency (83).

Rotational Osteotomies

For a long time, the importance of femoral internal torsion to anterior knee pain and patellofemoral instability has been underestimated, but the causative relation is getting more accepted. Increased femoral anteversion leads to an internally rotated gait unless compensated by external torsion of the tibia, which rotates the leg outward to maintain a normal foot progression angle. In the knee, increased femoral internal torsion results in abnormal patellofemoral loads. In a few case series and surgical techniques
papers excellent results have been reported by performing derotational distal external femoral osteotomies eventually in combination with internal tibia osteotomy or reconstruction of the medial patellofemoral ligaments (13,23,35,42,71,116,131).

CONCLUSION

In the past decade, many studies focusing on anatomy, biomechanics, pathomorphology, symptoms, and imaging techniques have contributed to the understanding of patellar instability. The conservative treatment approach for first time patellar dislocators has been challenged by two randomised studies favoring MPFL reconstruction. Screening first time patellar dislocation patients for trochlear dysplasia, patella alta and increased TT-TG distance can help predict the risk of re-dislocation and help to separate out those who should be treated conservatively from those who should have surgery. Experiencing patellar subluxations or recurrent patella dislocation often results in significant reduced quality of life, and operative intervention should be considered if physiotherapy-guided knee stabilising training has failed. Algorithms for surgical intervention should respect the pathomorphology revealed by MRI, and normalisation of biomechanical abnormalities must be considered. Both new radiologic parameters to interpret biomechanical factors for patellar instability, as well as new patient-related outcome measures to evaluate different surgical procedures, are important in optimising future surgical strategies. Trochlear dysplasia has been recognized as having major importance, and trochleoplasty procedures have become increasingly popular, but more longer duration follow-up studies are needed. Today the most widespread solution for recurrent patellar instability is reconstruction of the medial ligamentous stabilisers, and excellent results can be achieved, but medial patellofemoral ligament reconstruction are not a panacea for every patella instability and severe bony abnormalities must be look for and concomitantly corrected. Future studies must strive for higher levels of evidence, with randomised studies respecting the inhomogeneity of the patellofemoral instability. The goal is that all patients from the start to have the optimal long lasting treatment that ensures both a high level of activity with no pain, meaning that those who needs surgery only should be operated once.

Acknowledgement:

The author wants to thank Dr Sheila Strover for proof reading the paper.

REFERENCES

45. Diederichs G, Kohlitz T, Kornaropoulos E et al. Magnetic Resonance Imaging Analysis of Rotational Alignment

75. Hsiao M, Owens BD, Burks R et al. Incidence of acute traumatic patellar dislocation among active-duty United

trochlear dysplasia: MR findings. *Radiology* 2000 ; 216 :
858-864.

139. Rouanet T, Gougeon F, Fayard JM et al. Sulcus

140. Ruwe PA, Gage JR, Ozonoff MB et al. Clinical

144. Schoettle PB, Zanetti M, Seifert B et al. The tibial

147. Seitzinger G, Scheurecker G, Hogler R et al. Tibial

150. Shakespeare D, Fick D. Patellar instability—can the

163. Smith TO, Donnell ST, Clark A et al. The development, validation and internal consistency of the Norwich Patellar

