Bone and joint infections are rare but often devastating. While bacteria are most commonly encountered organisms, mycobacteria and fungi are less frequent. Management of the latter is often more complex, especially in the presence of foreign material. We will increasingly be faced with mycobacterial and fungal bone infections, as medical conditions and newer therapeutics lead to more immunosuppression. In this article, we will review osteomyelitis, septic arthritis and peri-prosthetic joint infections related to mycobacteria and fungi.

Key words: osteomyelitis; arthritis; peri-prosthetic joint infection; joint arthroplasty; candida; aspergillus; mycobacteria tuberculosis; non tuberculous mycobacteria (NTM).

INTRODUCTION

Bone and joint infections are rare but often devastating (28,64). The main causative pathogens are bacteria: gram positive cocci, followed by gram negative bacilli and anaerobic bacteria. Other organisms such as mycobacteria and fungi are more rarely involved (15,28,37,64,81) but treatment of the latter is more complex, especially in the presence of foreign material. Orthopedic surgeons and infectious diseases specialists will be increasingly faced with mycobacterial and fungal bone infections, as medical conditions and newer therapeutics lead to more immunosuppression.

To guide clinical practice, we will review the existing literature on the topic, and discuss the epidemiology, clinical presentations and treatments of osteomyelitis, septic arthritis and prosthetic joint infections related to mycobacteria and fungi.

Mycobacterial Infections of Bones and Joints

Osteomyelitis and Septic arthritis

Mycobacterium tuberculosis (MTB) is by far the most common cause of mycobacterial osteomyelitis and arthritis worldwide (28). The incidence of nontuberculous mycobacteria (NTM) disease has
increased dramatically in the last few years, hand in
hand with the AIDS epidemic. Bone destruction and
a relatively slow onset of symptoms are common
to MTB and NTM, but there are differences in the
epidemiology and treatment of these conditions
(15,28,37,64,81).

Epidemiology

Bone and joint MTB currently accounts for
2.2-4.7 % of all TB cases and around 10–15 % of
extrapulmonary MTB cases in Europe and the US.
In high-resource settings, a bimodal age distribution
is observed with natives being affected over 55
years of age while immigrants tend to be younger
(20–35 years old) (14,39, 62). The main risk factors
for mycobacterium tuberculosis are : age > 65 years,
country of origin, and female gender (14,36,39).

Specific risk factors for NTM bone infection
are a history of trauma or penetrating wounds ;
osteomyelitis in a geographic setting where a
particular NTM is known to be endemic ; and an
immunocompromised status (70).

Pathogenesis and clinical presentation

MTB osteomyelitis and arthritis generally
arise from foci of bacilli lodged in bone during
the mycobacteremia of the primary infection.
Tuberculous bacilli may also travel from the lung
to the spine by Batson’s paravertebral venous plexus,
or by lymphatic drainage to the para-aortic lymph
nodes. Given its rich vascular supply, the growth
plate of long bones is the most frequently infected
site. Tuberculous arthritis is believed to result from
an initial bone focus extending into the joint.

A large US–based study of bone and joint
tuberculosis over a 4-year period revealed that the
most common site of bony tuberculosis was the
spine (40%) ; followed by weight-bearing joints (hip
and knee) ; and lastly other sites (22). The proportion
of spinal disease was found to be greater than 50%
in more recent studies (36,39). The predilection for
spinal disease may be explained by its rich vascular
supply. Thoracic disease is more common in children
and adolescents ; lumbar disease is commoner in
adults (58,64). Most cases of tuberculous bone and
joint disease are isolated to one area, but multifocal
disease has been described (43).

The symptoms of tuberculous (MTB) bone and
joint infections are nonspecific, often indolent,
usually leading to significant delays in diagnosis,
resulting in bone or joint destruction. Only about
50% of affected patients have chest radiographs
suggestive of tuberculous infection, further
obscuring the diagnosis. Pain or local swelling are
the most frequent presenting complaints (34), while
fever and weight loss are present in only a minority
of patients (28,64). Cutaneous fistulae, abscesses,
and obvious joint deformities can be present. Spinal
disease may be associated with neurologic deficits
and patients with thoracic spine disease are at
particular risk of paraparesis or paraplegia.

Atypical mycobacterial osteomyelitis and arthri-
tis in non-immunocompromised individuals is
often secondary to direct inoculation from trauma
or surgery (17,28,46,55). However, hematogenous
dissemination of NTM with multifocal disease,
including bone and joint involvement, can occur
in immunocompromised individuals, mainly in
individuals with AIDS [1]. NTM have a predilection
for foreign bodies, such as prosthetic joints (28,37,64).

The clinical presentation of native bone and joint
disease NTM is similar to that of MTB tuberculosis.

Diagnosis

Diagnosis of mycobacterial infection of native
bone and joint requires a high suspicion index.
Different diagnostic methods are available to
help in or confirm the diagnosis : tuberculin skin
tests, Interferon gamma release assays (IGRA),
microscopy, mycobacterial cultures, histology
and Polymerase chain reaction (PCR).Acid-fast
smears are positive in only a minority of patients.
Confirmation of a clinical diagnosis should be
attempted by mycobacterial culture, also crucial
for antimicrobial sensitivities. Culture of deeper
structures is crucial, from bone, abscesses, or
synovial tissue, to avoid growing colonising
organisms. An older review of the use of synovial
fluid culture for M. tuberculosis reported a
sensitivity of 79%, whereas synovial tissue culture
had a sensitivity of 94% (77).

When mycobacterial cultures were ommitted,
histology can be helpful. Histologic evidence of
mycobacterial infection has been reported in 94% of
is effective (51-52). Prolonged therapy can be considered for slow-responders (28,64).

The role of surgery for bone and joint tuberculosis is relatively straightforward for sites other than the spine: while not essential, it can play a role in draining abscesses and decompressing vital structures, such as nerves (52,74-76). Joints that are significantly damaged may require debridement and possible fusion or replacement. On the other hand, patients with spinal tuberculosis tend to develop late neurologic and musculoskeletal complications (progressive kyphosis and spinal instability) if treated medically only. Given the close proximity of vital structures, it has been argued that aggressive surgical treatment should be used to stabilize the spine and prevent kyphosis, unless only very mild disease is present (74). Some have had successes with medical therapy alone (52). With adequate antituberculous chemotherapy, and surgery when required, relapses are uncommon (0-5 %). The reported mortality of spinal TB is usually low (0-6 %) (61).

There are no large randomized trials on NTM infections, but a combination of surgery and antibiotics is usually advocated for the treatment of bone and joint NTM. Aggressive surgical intervention can be justified for abscesses. In general, NTM are more resistant to antituberculous drugs than M tuberculosis, and in vitro resistance testing may not correlate with clinical response (76).

Prosthetic joint infections

Prosthetic joint infections (PJI) due to MTB are rare (6,65). They can occur in patients with no prior history of TB. The typical case is a misdiagnosed patient presenting with knee or hip osteoarthritis, treated with joint arthroplasty, who (sometimes much) later develops culture-negative chronic PJI (6). Immunosuppressive therapy can be the precipitating event.

The diagnosis is often difficult and should be suspected in culture-negative PJI with histological features of granulomatous lesions with macrophages and multinucleate cells with or without caseum. The diagnosis is confirmed by isolation of the microorganism on Loëwenstein culture or by molecular techniques (PCR).
Resection arthroplasty or arthrodesis has been used to treat this type of PJI, but when there is no loosening of the prosthesis, the patient may be cured with debridement, exchange of plastic components while retaining the prosthesis, and prolonged antituberculous therapy (9-12 months) (Table III).

NTM is also an infrequent cause of prosthetic joint infections. Early onset knee NTM PJI infection has been described after contamination with NTM from tap water-derived fluids peroperatively (66). Recently, a similar cluster of *M. fortuitum* prosthetic joint infections was reported (11,20). Empirical antibiotics should cover rapid growth mycobacteria, especially *M. fortuitum*, before identification results are known.

Combination of surgery and antimicrobial therapy is the preferred approach for NTM (31,79).

Prolonged antibiotics seem necessary before re-implantation; the optimal duration of antibiotic therapy is unknown (Table III). Minimum 6 months targeted antitycobacterial is recommended, and the regimen can be extended to 12 months or more in patients with disseminated disease (79).

Fungal Infections of Bones and Joints

Candida infections

Osteomyelitis

Candida osteomyelitis is associated with significant morbidity (24). Gamaletsou found that there was a strong male predominance with > 2:1 male :female ratio (24).
Table I. — Osteomyelitis with rarer organisms

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Mycobacterium Tuberculosis (MTB)</th>
<th>Non-Tuberculous Mycobacteria (NTM)</th>
<th>Candida spp</th>
<th>Aspergillus spp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>2.2-4.7 % of all cases of TB</td>
<td>10-15% of extrapulmonary TB</td>
<td>rare</td>
<td>Very rare</td>
</tr>
<tr>
<td>Risk factors</td>
<td>Age > 65 years, Female sex, Foreign birth</td>
<td>History of trauma or wound puncture, Osteomyelitis in endemic area, Immunocompromised status</td>
<td>Candidaemia, Risk factors for invasive candidiasis (abdominal surgery, parenteral nutrition, indwelling catheters...), Cutaneous candidiasis</td>
<td>Immunocompromised status, Prior open fracture, trauma or surgery</td>
</tr>
<tr>
<td>Mechanisms/Pathogenesis</td>
<td>Hematogenous spread during primary infection, From the lungs to the spine via Batson’s paravertebral venous plexus, Lymphatic spread to the para-aortic lymph nodes</td>
<td>Hematogenous spread in immunocompromised hosts, Direct inoculation by trauma or surgery in immunocompetent hosts</td>
<td>Hematogenous dissemination, Direct inoculation and/or contiguous spread</td>
<td>Hematogenous, Contiguous or Direct inoculation</td>
</tr>
<tr>
<td>Clinical presentation</td>
<td>Pain or local swelling, Fever and weight loss, Cutaneous fistulae or abscesses, Joint deformity, Paraparesis or paraplegia if spinal location</td>
<td>Pain or local swelling, Fever and weight loss, Cutaneous fistulae or abscesses, Joint deformity, Paraparesis or paraplegia if spinal location</td>
<td>Symptoms of insidious onset, Subacute or chronic course: pain, swelling, sinus tract formation</td>
<td>Osseous tenderness, pain, sinus tract formation and/or spontaneous drainage</td>
</tr>
<tr>
<td>Microbiology</td>
<td>Mycobacterium tuberculosis</td>
<td>Often negative cultures</td>
<td>Candida albicans (65%), C. tropicalis (16%), C. glabrata (8%), C. parapsilosis (7%)</td>
<td>Aspergillus fumigatus (55%), Aspergillus flavus (12%), Aspergillus nидulans (7%)</td>
</tr>
<tr>
<td>Medical treatment</td>
<td>Classical antituberculosis treatment (rifampin, isoniazid, pyrazinamide, ethambutol)</td>
<td>Depending on the microorganism involved and susceptibility results if available</td>
<td>*Fluconazole, 400 mg (6 mg/kg) daily, for 6–12 months or *an echinocandin (caspofungin 50–70 mg daily, or anidulafungin 100 mg daily) for at least 2 weeks followed by fluconazole 400 mg (6 mg/kg) daily, for 6–12 months or *Lipid formulation AmB, 3–5 mg/kg daily, for at least 2 weeks followed by fluconazole 400 mg (6 mg/kg) daily, for 6–12 months (alternative)</td>
<td>Voriconazole (6 mg/kg IV every 12 h for 1 day, followed by 4 mg/kg IV every 12 h; oral dosage is 200 mg every 12 h Duration:3–6 months or longer</td>
</tr>
<tr>
<td>Surgical management</td>
<td>Abscess debridement: removing purulent necrotic tissues from normal tissue, Spinal cord decompression, Permanent spinal stabilization: preventing or correcting deformity</td>
<td>Surgical debridement, Abscess drainage</td>
<td>Debridement in selected cases</td>
<td>Surgical debridement of infected and necrotic bone Case by case discussion</td>
</tr>
</tbody>
</table>
Table II. — Septic arthritis with rarer organisms

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Mycobacterium Tuberculosis (MT)</th>
<th>NTM</th>
<th>Candida spp</th>
<th>Aspergillus spp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>2.2-4.7 % of all cases of TB</td>
<td>rare</td>
<td>Rare but 80 % of fungal PJI</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>10-15% of extrapulmonary TB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk factors</td>
<td>Age > 65 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign birth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>History of trauma or wound puncture</td>
<td></td>
<td>Immuno compromised status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>History of osteomyelitis in endemic areas</td>
<td></td>
<td>Candidemia or other invasive candidiasis</td>
<td></td>
</tr>
<tr>
<td>Mechanisms/Pathogenesis</td>
<td>Hematogenous spread</td>
<td>Hematogenous in immuno compromised hosts</td>
<td>Hematogenous spread (80%)</td>
<td>Hematogenous spread in immunocompromised patients</td>
</tr>
<tr>
<td></td>
<td>Spread from a bone infectious focus extending into the joint</td>
<td>Direct inoculation by trauma or surgery in immunocompetent hosts</td>
<td>In immunocompetent patients; history of preceding surgery or open fractures</td>
<td></td>
</tr>
<tr>
<td>Clinical presentation</td>
<td>Local pain and tenderness Oedema and erythema Limitation of function and movement Sinus tracts (Fever and night sweats: uncommon)</td>
<td>Local pain and tenderness Oedema and erythema Limitation of function and movement Sinus tracts (Fever: uncommon)</td>
<td>Local pain and tenderness Oedema and erythema Limitation of function and movement Sinus tracts</td>
<td></td>
</tr>
<tr>
<td>Microbiology</td>
<td>Mycobacterium tuberculosis</td>
<td>Variety of species</td>
<td>Candida albicans (63%) Candida tropicalis (14%) Candida parapsilosis (11%) Candida krusei (4%), Candida glabrata (2%) Candida lusitaniae</td>
<td>Apergillus fumigatus</td>
</tr>
<tr>
<td>Medical treatment</td>
<td>Classical antituberculosis treatment (rifampin, isoniazid, pyrazynamide, ethambutol)</td>
<td>Depending on the available microorganism and susceptibility test results</td>
<td>*Fluconazole 400 mg (6 mg/kg) daily, for 6 weeks or *an echinocandin (caspofungin 50–70 mg daily, or anidulafungin 100 mg daily) for 2 weeks followed by fluconazole400 mg (6 mg/kg) daily, for at least 4 weeks or *Lipid formulation AmB, 3–5 mg/kg daily, for 2 weeks, followed by fluconazole 400 mg (6 mg/kg) daily, for at least 4 weeks (alternative)</td>
<td>Voriconazole (6 mg/kg IV every 12 h for 1 day, followed by 4 mg/kg IV every 12h; oral dosage is 200 mg every 12 h</td>
</tr>
<tr>
<td></td>
<td>Duration: 6-9 months</td>
<td>Duration: unknown</td>
<td>Duration: minimum 6–8 weeks warranted in non immunocompromised patients; longer in immunocompromised patients</td>
<td></td>
</tr>
<tr>
<td>Surgical management</td>
<td>Drainage in all cases</td>
<td>Drainage in all cases</td>
<td>Drainage in all cases</td>
<td>Drainage in all cases</td>
</tr>
</tbody>
</table>
Candida osteomyelitis develops predominantly in patients who are not neutropenic or otherwise immunocompromised. A high index of suspicion is needed for all candidemic patients with subsequent localizing osteoarticular symptoms. Similarly, patients with localizing osteoarticular symptoms following surgery should be further evaluated for Candida osteomyelitis.

Hematogenous dissemination is commonest, but direct inoculation or contiguous spread of infection occur. Involvement of 2 or more bones is common, so when a single focus of infection is identified, other sites should be sought. The axial skeleton is the most commonly affected site in adults; in children, it is the long bones (12,24,32,56,68). Most patients present with localizing symptoms of insidious onset with only moderate blood inflammatory markers (24).

Non-albicans Candida species were found to be an increasingly frequent cause of Candida osteomyelitis with bacterial copathogens, including *S. aureus*. Some authors found Candida albicans in 65% of cases, C. tropicalis in 16%, C. glabrata in 8%, and C. parapsilosis in 7% (24).

The evidence favors the use of fluconazole or an echinocandin rather than amphotericin B (12-13,24,33,48,50,56,59-60,67-68,71). Fluconazole has been used successfully as initial therapy for patients who have susceptible isolates, but treatment failures have also been reported (13,33,50,71). The Infectious Diseases Society of America (IDSA) recommends fluconazole daily, for 6-12 months or an echinocandin for at least 2 weeks followed by fluconazole daily, for 6-12 months (60). Lipid formulation AmB, daily, for at least 2 weeks followed by fluconazole daily, for 6-12 months is a less attractive alternative (Table I). Surgical debridement is recommended in selected cases (60).

Septic arthritis

Fungal arthritis is infrequent; a Candida species is most often involved (4,26). Early reports suggested that Candida arthritis developed most commonly as a complication of disseminated candidiasis (21,54). In the series by Gamaletsou et al, candida arthritis was associated with a wide range of underlying conditions: 34% were immunocompromised but the majority had no apparent underlying immune impairment; most had had a candidemia or invasive candidiasis before or during the episode of arthritis, but 26% patients had no preexisting candidiasis (26). *Candida albicans*, *C. tropicalis*, and *C. parapsilosis* were the most common *Candida spp* identified (26).

Symptoms include local pain and tenderness, oedema, and localized erythema. Fever seems uncommon. Limitation of function and movement is seen in one third of patients. Sinus tracts and draining pus are rare (Table II). In the context of invasive candidiasis or candidemia, evaluation of musculoskeletal symptoms may reveal localization to 1 or more joints. However, because Candida arthritis also may arise de novo in more than 25% of patients, a high index of suspicion is warranted (26).

Arthrocentesis or arthroscopy is essential for a definitive diagnosis to provide histological and bacterial specimens to confirm the diagnosis (Figure 3 and 4).

Treatment of Candida arthritis should relieve symptoms, eradicate infection, prevent joint injury and restore function. Surgical drainage is indicated in all cases of septic arthritis (60). There is no evidence-based standard treatment regimen for patients with fungal osteoarticular infections of native joints. The Infectious Diseases Society of America (IDSA) guidelines recommend fluconazole for 6 weeks or an echinocandin for 2 weeks followed by fluconazole for at least 4 weeks. Lipid formulation AmB, for 2 weeks, followed by fluconazole for at least 4 weeks, is a second choice alternative (60). However, given the activity of echinocandins on Candida biofilms (44,57,69) initial therapy with an echinocandin seems a reasonable approach.

Prosthetic joint infection

Fungal PJI is uncommon, occurs in approximately 1% of all PJIs (3,63), and most are caused by *Candida albicans* and *Candida parapsilosis* (3,38,40,63). Extensive comorbidities and decreased immunity are considered risk factors (3,38,63). Host factors include an immunosuppressed state, diabetes mellitus, rheumatoid arthritis, malignancy, tuberculosis, and/or renal insufficiency (1,40,44). Other factors include drug abuse, prolonged antibiotic use, indwelling catheters, malnutrition, severe burns, and multiple abdominal surgeries (1,3,40); as well as previous
OSTEOARTICULARS INFECTIONS

PJIs, revision surgery, and cutaneous candidiasis (1,3,10,19,40,80).

In a series of 164 fungal PJIs, most patients presented with symptoms of chronic infection such as pain (78%) and swelling (65%). Other symptoms included warmth (18%), limited range of motion (10%), redness (8%), and fever (7%). Wound drainage and sinus tract were described in 4% and 9% of patients, respectively (42). The mean duration from last performed arthroplasty to diagnosis of fungal PJI was 27 months (range 2 weeks to 22 years).

Surgical options are similar to those for bacterial PJIs (56). Kuiper et al. found no evidence that 1-stage revision or ‘debridement, antibiotics, irrigation, and retention’ (DAIR) or antifungal therapy alone adequately controlled fungal PJI (42). A two-stage revision should therefore be the standard treatment for fungal PJI. After resection of the prosthesis, we recommend systemic antifungal treatment for at least 6 weeks, provided complete resolution of inflammatory parameters. Reimplantation can then be performed. This was confirmed in a recent systematic reviews of fungal PJI of the knee (38). Most authors suggest a minimum duration of 6 weeks antifungals after reimplantation (1,63) but others suggest minimum 12 months (2-3). Amphotericin B or fluconazole have been considered the drugs of choice (2). The use of echocandins was only described in a few reports (8,18,30,49), but it may be a good alternative (low toxicity, broad spectrum), especially for fluconazole-resistant fungal species, or if amphotericin B is not tolerated by the patient. If removal of the arthroplasty is not an option, chronic suppression with fluconazole is recommended. This is summarised in Table III.

Aspergillus infections

Osteomyelitis

Aspergillus osteomyelitis is a debilitating and severe form of invasive aspergillosis (25,35,72). Nearly 80% of Aspergillus osteomyelitis in the literature were the first manifestations of invasive aspergillosis. The most common infecting species were *Aspergillus fumigatus* (55%), *Aspergillus*
flavus (12%), and Aspergillus nidulans (7%).

As the population of immunocompromised patients continues to expand, so will Aspergillus osteomyelitis. Gamaletsou (25) saw predisposing medical conditions present in 103 (57%) patients including pharmacological immunosuppression, primary immunodeficiency, and neutropenia. Seventy-three others (apparently immunocompetent) (41%) had prior open fracture, trauma or surgery. In his own review, Gabrielli et al (23) found that comorbidities included chronic granulomatous disease (19%), haematological malignancies (11%), transplantation (11%), diabetes (6%), pulmonary disease (4%), steroid therapy (4%), and human immunodeficiency virus infection (4%).

In the Gamaletsou et al. review (25), the most frequently infected sites were vertebrae (46%), cranium (23%), ribs (16%), and long bones (13%). Patients with vertebral Aspergillus osteomyelitis had had previous orthopedic surgery (19% vs 0%; P = 0.02), while those with cranial osteomyelitis had more diabetes mellitus (32% vs 8%; P = 0.002) and prior head/neck surgery (12% vs 0%; P = 0.02). Gabrielli et al (23) found that the sites of infection in their 310 cases included the spine (49%), the base of the skull, paranasal sinuses and jaw (18%), ribs (9%), long bones (9%), sternum (5%), and chest wall (4%). Vertebral disease was predominantly spondylodiscitis with nearly 50% of cases progressing to spinal cord compression associated with neurological deficits. Vertebral and costal disease arose from contiguous pulmonary aspergillosis, by hematogenous dissemination; occasionally by traumatic inoculation (25).

Early recognition of Aspergillus osteomyelitis depends upon recognizing vulnerable populations with symptoms of osseous tenderness, pain, sinus tracts and/or drainage. Histological and bacterial specimens are essential for the diagnosis.

The Infectious Diseases Society of America (IDSA) treatment guidelines state that voriconazole is recommended as 1st-line antifungal agent for IA,

Fig. 4. — Histopathology bone section using standard stain showing extensive necrosis within cancellous bone, and some lysed inflammatory cells (H&E x 200). At a larger magnification (H&E x 600), rare filaments can be detected (arrow), suggestive of fungal infection.
The optimal duration of treatment for Aspergillus osteomyelitis is unknown (Table I). In the study of Horn et al (35), six of 8 patients who were alive at follow-up had been treated for a minimum of 12 weeks. Interestingly, the 2 patients with a complete response were treated for 16 and 26 days, each with surgical debridement, for a rib cartilage and

including Aspergillus osteomyelitis (78). Despite the paucity of prospective data, voriconazole appears to be the drug of choice for Aspergillus osteomyelitis, based on its activity against Aspergillus, the bioavailability of the oral formulation, and its acceptable side-effect profile. In addition, voriconazole is minimally protein bound and reaches high concentrations in difficult to penetrate compartments (16).

Table III. — Prosthetic joint infections with rarer organisms

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>M. tuberculosis (MTB)</th>
<th>Non-tuberculous mycobacteria (NTM)</th>
<th>Candida spp</th>
<th>Aspergillus spp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Rare</td>
<td>Rare but more common than MTB</td>
<td>1% of all fungal PJI</td>
<td>Very rare But 8.8% of fungal PJI</td>
</tr>
<tr>
<td>Risk factors</td>
<td>History of arthroplasty</td>
<td>History of trauma or surgery, Immunosuppression</td>
<td>Extensive comorbidit and decreased immunity</td>
<td>Immunocompromised status</td>
</tr>
<tr>
<td>Mechanisms/pathogenesis</td>
<td>Unknown</td>
<td>Intraoperative contamination in early PJI</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Clinical presentation</td>
<td>PJI with negative cultures</td>
<td>PJI with negative cultures</td>
<td>Pain and swelling Calor and Erythema Fever Limited range of motion Wound drainage/ sinus tract</td>
<td>Local pain and tenderness Oedema and erythema Limitation of function and movement Sinus tracts</td>
</tr>
<tr>
<td>Microbiology</td>
<td>M. tuberculosis</td>
<td>Variety of species particular Mycobacterium fortuitum</td>
<td>Candida albicans and Candida parapsilosis</td>
<td>Aspergillus fumigatus Aspergillus niger (very rare)</td>
</tr>
<tr>
<td>Medical treatment</td>
<td>Classical antituberculosis treatment (rifampin, isoniazid, pyrazynamide, ethambutol)</td>
<td>Depending on the microorganism found and results of susceptibility tests</td>
<td>*Fluconazole 400 mg (6 mg/kg) daily, for 6 weeks or *an echinocandin (caspofungin 50–70 mg daily, or anidulafungin 100 mg daily) for 2 weeks followed by fluconazole 400 mg (6 mg/kg) daily, for 6 weeks or longer (up to 12 months) *Lipid formulation AmB, 3–5 mg/kg daily, for 2 weeks, followed by fluconazole 400 mg (6 mg/kg) daily, for 6 weeks or longer (alternative)</td>
<td>Voriconazole (6 mg/kg IV every 12 h for 1 day, followed by 4 mg/kg IV every 12 h; oral dosage is 200 mg every 12 h Unknown duration; minimum 3 months</td>
</tr>
<tr>
<td>Surgical treatment</td>
<td>Arthrodesis 2-stage exchange arthroplasty Debridement and prosthesis retention if no loosening of the implant</td>
<td>2-stage exchange arthroplasty</td>
<td>2-stage exchange arthroplasty (6 weeks of antifungal between the two stages)</td>
<td>2-stage exchange arthroplasty combined with prolonged antifungal therapy is highly recommended.</td>
</tr>
</tbody>
</table>
suspicion. Confirming the diagnosis requires joint puncture for microbiological and histopathological analyses. The organism can be isolated from the synovial fluid and the total leukocyte cell counts are generally above 5000/mm3, associated with a relative neutrophilia. Aspergillus grows very fast and the cultures are usually visible within 2 to 4 days, although in some cases it may require a longer incubation period (73).

The treatment of Aspergillus arthritis includes surgical drainage along with administration of antifungal agents like amphotericin B or voriconazole (Table II), despite the lack of consensus (78). There is risk of nephrotoxicity with the use of amphotericin B so its maximum dose and duration should be stringently regulated. Voriconazole can be used both intravenous and oral dosage form with fewer side effects. The duration of treatment is unknown. In the IDSA guidelines, treatment for a minimum of 6–8 weeks is warranted in non-immunocompromised patients. For immunocompromised patients, considering long-term suppressive therapy or treatment throughout the duration of the immunosuppression is appropriate (78).

Prosthetic Joint Infection

Aspergillus PJI is rare. In a series of 45 fungal knee PJIs, Aspergillus spp were the causative agents in 4/45 (8.8%): Aspergillus fumigatus in 3/4, Aspergillus niger in 1/4 (27). Most cases have been described in immunocompromised patients (9); one case report describes aspergillus in a knee PJI in a non-immunocompromised patient with a megaprosthesis (5).

A two-stage exchange arthroplasty combined with prolonged antifungal therapy is highly recommended for the treatment of an Aspergillus PJIs (5) (Table III). The Infectious Diseases Society of America (IDSA) treatment guidelines state that voriconazole is recommended as 1st-line antifungal agent for an invasive aspergillosis, including Aspergillus osteorarticual infections (78). The optimal duration of antifungal therapy is unknown. For immunocompromised patients, consideration of long-term suppressive therapy or treatment...
throughout the duration of immunosuppression is appropriate.

CONCLUSIONS

We have presented a review of the literature regarding the management of bone and joint infections due to mycobacterial and fungal infections. In this area of scarce evidence-based data, we think that this comprehensive review can be valuable to guide clinicians in the diagnosis and treatment of such difficult infections.

REFERENCES

68. Slenker AK, Keith SW, Horn DL. Two hundred and eleven cases of Candida osteomyelitis: 17 case reports and a review of the literature. Diagn Microbiol Infect Dis 2012;73:89-93.

