The treatment of basicervical femoral fractures remains controversial. The aim of this study was to examine the efficacy of intramedullary nail use in the surgical treatment of basicervical fractures. In total, 28 patients with basicervical fractures treated with proximal femoral nails were examined retrospectively. Fracture healing was observed in all patients, who were followed at least for 6 months. While the average radiological fracture healing timing was ~10.5 (8-14) weeks, clinical fracture healing occurred in 6 (5-9) weeks on average. Screw cut-out, avascular necrosis, femur fracture, and surgical wound infections did not occur in any patient. Severe collapse (> 10%) was not noted in any patient. The postoperative mean Harris hip score was 81.2 ± 21.3. Osteosynthesis application with a proximal femoral nail in basicervical proximal femur fractures is a surgical treatment that can be performed with minimally invasive techniques without open surgery. This is a rapid, sound, and simple treatment method with low morbidity.

Keywords: hip; survey; knee arthroplasty; alignment.

INTRODUCTION

Proximal femoral fractures have been studied in detail because intertrochanteric fractures are seen commonly in orthopaedic practice (17). Various classification systems have been developed, along with treatment algorithms (22,29). Additionally, different treatment models with different implants have been suggested for various types of these fractures (1,25,27).

Proximal femoral fractures include intertrochanteric fractures (50%), femoral neck fractures (40%) (20), and basicervical fractures (1.8%) (26). There are differences in opinion as to whether basicervical fractures should be considered neck or intertrochanteric fractures. Some have argued that they are extracapsular, while others insist that they are intracapsular fractures (16,22,24,29). Blair et al (6)
defines this fracture as a fracture at the joint area of the intertrochanteric site and the femoral neck, whereas Parker et al (24) consider fractures at the capsule adhesion line to be bascervical fractures. Basicervical fractures classified according to AO/OTA classification are considered proximal femur B2.1 type transcervical fractures (29).

Treatment of femoral fractures may change according to the general situation of the patient and the anatomical location of the fracture. However, because the classification of bascervical fractures is uncertain, different treatment methods using various implants have been used to date (10,16,19,21,26,28). The efficacy of intramedullary nails (IMNs) in the treatment of bascervical fractures, which have been shown to be biomechanically superior to DHS, and are used widely in surgical treatment of intertrochanteric fractures today (8,14,25), has been analysed in only one reported study (13).

In this study, patients who were treated with intramedullary nails (IMNs) in our clinic were examined retrospectively and the efficacy of IMN treatment in the surgical therapy of bascervical fractures was examined by analysing patients with bascervical fractures treated using this method.

PATIENTS AND METHODS

In total, 42 patients from two centres between January 2006 and January 2013, who had bascervical femur fractures treated with proximal femur nail (PROFIN), were analysed retrospectively. In anterior-posterior (AP) and lateral radiography, fractures that did not extend to the trochanteric site and were at the joint of the femur neck and intertrochanteric site were considered to be bascervical fractures (Fig. 1). As result of a first analysis by two observers, four patients who were diagnosed with transcervical collum femoris fractures (AO/OTA ; B2.2 and B2.3) and four patients who had trochanteric extensions were excluded from the study. In the second analysis, one patient who died in the first 6 months and five patients whose follow-up times were shorter than 6 months were also excluded. Thus, 28 patients were included in the study.

All patients underwent surgery using proximal femoral nails (PROFIN nails : TST Ind., Istanbul, Turkey). PROFIN is a nail made of a titanium alloy that is fissured distally and the mediolateral curvature of which is 6°. The nail is of three designs with 10-, 11-, or 12-mm distal diameters. It has a 16-mm proximal diameter and is available in two lengths, 220 and 250 mm. PROFIN can be fixed with two 8.5-mm-diameter lag screws at the proximal end and with two 4.5-mm-

Fig. 1. — Male patient, aged 83. A : AP X-ray shows a bascervical fracture in the right hip that had occurred after a simple fall. B : Coronal computed tomography (CT) section of fracture.
diameter screws, one dynamic and one static, at the distal end (Fig. 2).

The fracture line was reduced appropriately in accordance with the anatomy before the operation after all patients were prepared according to a standard procedure at the traction table. The operation was conducted in a minimally invasive manner with a 5-cm incision that extended to the trochanter major’s tip proximally. Patients not having additional medical problems were mobilised with weight-bearing on postoperative day 1. In the postoperative period, patients were called for follow-up at the first, second, and sixth months, and annually subsequently (Fig. 3).

The Singh index (9) was analysed from the AP radiographs at the preoperative stage for all patients. The degree of reduction was decided upon from AP and lateral radiographs taken at the early postoperative stage. It was regarded as an “anatomical” reduction when the varus, valgus, or anteversion deviated from normal values by less than 5°, between 5 and 10° was considered an “acceptable” reduction, and greater than 10° was deemed a “bad” reduction (3). Not having pain during mobilisation was taken to indicate clinical fracture healing and noticing callus bridging at the fracture line as radiological fracture healing. Screw cut-out, femur fracture, wound infection, and varus development as a result of collapse were considered to be complications. Taking into consideration the screw location at the very proximal end, developing collapse of less than 10% was considered a “slight collapse,” and more than 10% as a “serious collapse” (21). Serious collapse was regarded as a complication. We used the Ficat classification (12) for the radiological classification of the presence of osteonecrosis. Clinical pain, walking capacity, activity, and joint ability were analysed using the Harris hip scoring (HHS) system (18). Independence of the patients during the period they were under their own care was analysed using the modified Barthel index (MBI) (15).

Non-parametric methods were used for the statistical analysis. Categorical variables are recorded as numbers and percentages, and continuous variables as means and standard deviations (SDs). When analysing differences between means of two groups, the Mann-Whitney U-test was used.

RESULTS

Of the patients, 11 (39.3%) were males and 17 (60.7%) females. Their mean age was 71.0 ± 14.3 (45-95). Eight of patients had hip fractures on the right side, while in 20, it was on the left side. Reasons for fractures in five patients were falls from heights, and in 23, falling within the house. When classified according to the Singh index, those with 5 or 6 points were regarded as ‘good,’ and the others as ‘bad.’ The mean age of the good group was 60.5 ± 14.5 versus 77.8 ± 8.4 in the bad group (p = 0.007; Table I).

The mean follow-up time was 29.2 ± 14.8 (6-72) months. The nail was fixed with the help of two screws proximally, but as a result of technical problems with the guide system in three patients, the distal hole could not be fixed. The nail was fixed from the distal through the dynamic hole with one screw in the remaining 25 patients. The reduction was deemed anatomical in 19 (67.8%) patients, acceptable in 6 (21.4%), and bad in 3 (10.7%). It was noticed that 15° varus developed in two of the three patients with bad reductions versus the other hip and anteversion was decreased by 12° in one patient.

Fracture healing occurred in all patients and no deformity was seen during the healing process. The radiological fracture healing time was 10.5 (8-14)
weeks, on average, and the clinical healing time was 6 (5-9) weeks, on average. No screw cut-out, femur fracture, or surgical wound infection was detected in any patient. Collapse was not encountered in 3 (10.7%) patients, but in 25 (89.3%) patients, slight (<10%) collapse was seen. Serious collapse (>10%) was not seen in any patient.

The mean Harris femur score of the patients was 81.2 ± 21.3 and the mean modified Barthel index was 81.1 ± 26.0. The Harris hip score results were very good in 42.9% of patients, good in 25.0%, mild in 10.7%, and bad in 21.4% (Table II). According to the modified Barthel index, 50.0% of the patients were fully independent, 7.1% slightly dependent, 21.4% mildly dependent, 14.3% severely dependent, and 7.1% totally dependent (Table III).

The modified Barthel index and Harris hip scores were statistically significantly higher in the patients aged 64 and younger versus patients aged 65 and older (p = 0.014 and 0.007, respectively). As the ages of the patients increased, the mean Bartel and Harris scores decreased. When the patients were categorised into two groups: those less than and

Fig. 3. — A 88-year-old female patient with a right basicervical femoral fracture: 24-month follow-up. Harris hip score = 100, modified Barthel index = 100. A-B: Preoperative X-rays. C-D: Early postoperative X-rays. E: Postoperative X-ray at 24-month follow-up.

Table I. — Singh index distribution

<table>
<thead>
<tr>
<th>Singh index</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3.6</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>10.7</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>25.0</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>21.4</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>28.6</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>10.7</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Acta Orthopædica Belgica, Vol. 81 - 3 - 2015
Table II. — Harris Hip Score distribution of the patients

<table>
<thead>
<tr>
<th>Harris Hip Score</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>very good</td>
<td>12</td>
<td>42.9</td>
</tr>
<tr>
<td>good</td>
<td>7</td>
<td>25.0</td>
</tr>
<tr>
<td>mild</td>
<td>3</td>
<td>10.7</td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>21.4</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table III. — Modified Barthel index distribution

<table>
<thead>
<tr>
<th>Modified Barthel Index</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully dependent</td>
<td>2</td>
<td>7.1</td>
</tr>
<tr>
<td>Severe dependent</td>
<td>4</td>
<td>14.3</td>
</tr>
<tr>
<td>Mild dependent</td>
<td>6</td>
<td>21.4</td>
</tr>
<tr>
<td>Slightly dependent</td>
<td>2</td>
<td>7.1</td>
</tr>
<tr>
<td>Fully dependent</td>
<td>14</td>
<td>50.0</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>100.0</td>
</tr>
</tbody>
</table>

More than 65 years of age, the mean value of the Harris hip score for those less than 65 years of age was 93.1 ± 16.2, and for those more than 65 years of age was 75.6 ± 21.3. The mean value of the MBI for those less than 65 years of age was 96.7 ± 10.0, and for those more than 65 years of age was 73.7 ± 28.1 (Table IV). No significant association was found between reduction quality and MBI or HHS (p = 0.51 and 0.49, respectively).

DISCUSSION

The treatment and definition of bascervical femoral fractures have been controversial. Moreover, there are few data about treatment, especially in comparison with other types of femur fracture. Bascervical fractures have been treated using Ender nails, DHS, Jewet nails, ASIF 130° angled blade plates, Knowles pins, external fixators, and hemiarthroplasty to date (7,10,16,19,21,28,26). However, as a result of the clinical and biomechanical studies published to date, it seems clear that the only treatment type demonstrated to be effective is DHS, and an antirotation screw to set the DHS to prevent rotation is beneficial for providing rotational control, but makes no additional contribution to fixation or stability (6,11).

Few studies have researched the treatment of bascervical fractures. In the study by Kuokkanen et al (1991) (16), six surgical treatments were used in 38 patients with bascervical fractures and the results were compared. The authors emphasised that the rate of fracture healing in bascervical fractures was low, asserted that the use of hemiarthroplasty and Ender nails was unsuitable, and stated that the option of using cannulated screws was especially suitable for intracapsular fractures and that blade plates (ASIF, Jewet), despite being an old design, were the most suitable choice for the treatment of bascervical fractures. Saarenpaa et al (2002) (26) examined 1624 femur fractures over 8 years retrospectively and found 30 (1.8%) bascervical fractures. Of these 30 patients, 16 were treated as intracapsular fractures and 14 as extracapsular. The authors evaluated bascervical femoral fractures as a type of extracapsular fracture and concluded that the results were more successful when treated, that a hemiarthroplasty is not a good choice for the treatment of bascervical fractures, and that sliding hip screws were more stable than multiple cancellous screws. Su et al (2006) (28) evaluated 66 patients retrospectively and compared the long-term functional results of intertrochanteric fractures and bascervical fractures, the stability of fractures and the effectiveness of an antirotation screw used together with a DHS between the two groups. The authors determined that more collapse developed in the femoral neck during the recovery period in the group with bascervical fractures, and stated that this was the result of the bascervical fractures being more unstable than intertrochanteric fractures. They also remarked that the antirotation screw had no impact on the stability of fractures or the functional

Table IV. — Statistical analysis between age groups and means and standard deviations of the modified Barthel index and Harris hip score according to age

<table>
<thead>
<tr>
<th>Age (year)</th>
<th>Mean ± SD</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 64</td>
<td>96.7 ± 10.0</td>
<td>93.1 ± 16.2</td>
</tr>
<tr>
<td>≥ 65</td>
<td>73.7 ± 28.1</td>
<td>75.6 ± 21.3</td>
</tr>
<tr>
<td>p value*</td>
<td>0.014</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Acta Orthopaedica Belgica, Vol. 81 - 3 - 2015
basocervical fractures providing that there are successful results in unstable extraarticular fractures using IMNs (29). It has been reported that the results were good and that the external fixator can be good treatment choice. Chen et al. (2008) (30) examined the treatment results of 200 patients with basocervical fractures retrospectively and postoperatively using AO external fixator. In a study of 42 patients, Massouli et al. (2010) (31) stated that AO, B2.1, A2.2, and A2.3 fracture types were similarly unstable and for this reason, B2.1 (basocervical) fractures should be considered to be extraarticular. However, only one clinical study in which IMNs were used in the treatment of basocervical fractures has been reported. Hu et al. (2013) (32) treated 30 patients with basocervical fractures by using IMNs. The average Harris score was 86.5 (74–96). Among these patients, 11 patients had perfect, 15 had good, and four had bad results. The authors explained that IMN use in the treatment of basocervical fractures allowed early mobilisation by enabling stable fixation and that the mid-and short-term results were excellent.

Because there was no vascular necrosis in the cases with basocervical fractures, it was been proposed that these fractures be treated as unstable extraarticular fractures by regarding them as extracapsular (29).

No avascular necrosis was detected in our study. It seems reasonable to use IMNs in the treatment of basocervical fractures.
nail was not locked freehand in patients whose distal lock screws could not be locked because of technical difficulties. The fracture healing of these three patients healed within a normal time period and no newly developed deformity was detected at the last follow-up. It is understood that if a stable anatomical reduction is achieved in an unstable intertrochanteric fracture treated with IMN, then distal locking is not essential (23). For this reason, not being able to lock the distal screw was not regarded as a complication.

The Harris hip score and the modified Barthel index of the patients were only assessed at the last follow-up. The mean Harris score was 81.2 ± 21.3 and the mean modified Barthel index was 81.1 ± 26.0. In the statistical analyses, it was understood that these scoring systems, independent of other parameters, were age-dependent, so long as the patients were categorised as older and younger than 64 years.

In conclusion, the complications that develop after the surgical treatment of extracapsular fractures depend on the stability of the fracture, the quality of the bone, and the quality of the reduction. Basicervical fractures are considered extracapsular fractures. They are unstable extracapsular fractures and can show good results when treated with IMNs even if the bone quality is poor. The fixation of basicervical fractures can provide sufficient stability during the fracture healing period, when using IMNs. IMN use is less invasive than DHS. It allows early mobilisation of the patients and provides earlier fracture union clinically.

The most important limitation of our study was the small number of patients included. To obtain more comprehensive results regarding rarely seen complications, such as cut-out, femoral fractures, and postoperative results of IMN use in basicervical fractures, it is important to conduct further studies in a larger number of patients that include operated-on control groups and patients with unstable intertrochanteric fractures.

REFERENCES

