The aim of the study is to determine whether bilateral pedicle screw placement and posterior only spinal fusion improves sagittal correction parameters compared to alternate posterior segmental fixation in adolescent idiopathic scoliosis. 49 patients with Lenke Type 1 main thoracic curves who underwent single stage posterior only instrumentation and spinal fusion at a single center were retrospectively evaluated according to coronal radiological parameters. Patients divided into two groups of treatment strategy. Bilateral segmental fixation group’s results were similar to alternate fixation group. Although quality of life or cosmetic evaluation of patients not involved in this study, alternate fixation provides similar results as bilateral segmental fixation in adolescent idiopathic scoliosis.

Keywords: adolescent idiopathic scoliosis; Lenke type 1 curve; fusion; radiographical measurement.

INTRODUCTION

The use of pedicle screw implants for adolescent idiopathic scoliosis (AIS) take place of hook implants over several years. Pedicle screws have been shown to be safe and effective with their greater correction power in coronal, sagittal and axial plains in the treatment of AIS (2,3,6,8,14,16,23,24). Besides this, pedicle screws were shown to have superior biomechanical properties from other instrumentation techniques (13,15).

Pedicle screw fixation in the thoracic spine first used for trauma and tumors (21). In 1995 Suk et al. reported thoracic pedicle screw fixation in the treatment of AIS (24). They found better coronal correction with all screw constructs than all hook constructs. Correspondingly Kim et al. found 75% major curve correction in all screw group and 49% in all hook group. Lowenstein et al. observed better correction of main thoracic curve in the all screw construct group (9,17).

There are limited studies investigating whether bilateral pedicle screw placement improves correction of deformity compared to alternate segmental

No benefits or funds were received in support of this study. The authors report no conflict of interests.
fixation in AIS (19,27). Quan retrospectively re-
viewed Lenke Type 1 AIS who underwent one stage poste-
rior only spinal fusion and found bilateral seg-
mental fixation did not improve curve correction
compared to unilateral or alternate segmental fixa-
tion (19). Yang et al. evaluate the relationship be-
tween implant density, Cobb angle correction and
cosmesis and found that increasing density did not
improve Cobb angle and did not change cosmesis
parameters (27).
Radiological evaluation of AIS is not limited
only with Cobb angle. T1 tilt angle clavicle angle,
apical vertebral translation, trunk shift are para-
eters evaluating coronal balance in AIS (10,26).
This study evaluates sagittal parameters of posterior
only instrumented Lenke Type1 AIS patients
between bilateral segmental fixation group and
alternate segmental fixation groups.
The purpose of this retrospective study is to de-
terminate whether bilateral pedicle screw placement
and posterior only spinal fusion improves sagittal
correction parameters compared to alternate poste-
rion segmental fixation in AIS.

MATERIALS AND METHODS

49 consecutive (7 males, 42 females) adolescent idio-
pathic scoliosis patients with Lenke Type 1 main thoracic
curves who underwent single stage posterior only instru-
mentation and spinal fusion at a single center were retro-
spectively evaluated. Magnetic resonance imaging was
routinely performed before the surgery and no neurologi-
cal abnormality which could affect surgery strategy was
detected. Apex of the major thoracic curves was between
T6 and T10. The average age at the time of surgery was
14 ± 0,9. Patients were divided into two groups accord-
ing to implantation as alternate segmental fixation group
and bilateral segmental fixation group (Fig. 1, 2).
Coronal radiographic analyses include Cobb angles,
apical vertebral translation (AVT), coronal balance (CB),
T1 tilt angles (T1A), clavicle angles (CA), and trunk shift
(TS). Standing whole spine anteroposterior radiographs
before the surgery and at last follow up were evaluated.

Fig. 1. — Preoperative and 4 year postoperative x-ray of a patient in alternate fixation group
Patients without standard X-ray were excluded from the study. Average follow up was 48 months.

All surgeries were performed by the same surgery group at a single institution, senior author was the major surgeon of all surgeries. Treatment was selective thoracic fusion usually extended from one level above the proximal end vertebra to one level below the distal end vertebrae. All pedicle screws were inserted using free hand technique under continuous neuromonitorization. Correction was performed by rod derotation, translation, segmental derotation and compression-disraction maneuvers. The posterior elements were decorticated and and autologous bone grafts mixed with demineralized bone matrix placed along the decorticated fusion bed.

We used the SPSS software package (version 15.0, SPSS, Chicago, IL) and expressed categorical variables as percentages and continuous variables as mean ± standard deviation (SD) or median (quartiles). We used the Kolmogorov-Smirnov test to evaluate whether the distribution of continuous variables was normal. For parameters that showed normal distribution we used the paired sample t test and for parameters that did not show normal distribution we used the Mann-Whitney U-test. We used the Chi-square test to analyze categorical variables. Statistical significance was set at p < 0.05.

RESULTS

Patient age at the time of surgery was 14.09 ± 0.84 in bilateral segmental fixation group of 23 (20 female, 3 male) patients and 13.96 ± 0.99 in alternate segmental fixation group of 26 (22 female, 4 male) patients (p = 0.64). Average follow up period of the groups was 4.00 ± 0.85 and 3.69 ± 1.08 years respectively (p = 0.28).

In preoperative radiologic evaluation no significant difference found between the groups in Cobb angles of proximal thoracic, main thoracic and lumbar curves. Also the other coronal plane angles;
this study we measured these parameters and found no significant difference in global balance between bilateral segmental fixation and alternate fixation groups in Lenke 1 AIS patients.

Pedicle screws provides longer moment arm and better 3 column control compared with laminar hooks and for this reason segmental systems are currently decided to be the gold standard to correct deformities (5,15). As a result of these more correction of curves can be expected with bilateral segmental fixation. Lowenstein et al. compare all screw and hybrid constructs and found no significant difference between groups although better correction trend of main thoracic curves with all screw construct (17). Quan found no correlation between implant density and magnitude of coronal or sagittal correction in his study of 49 Lenke 1 AIS patients. Diametrically Dobbs et al. reported significant curve correction with pedicle screws versus hooks in major thoracic compensatory lomber C modifier curves. They evaluate apical vertebral translation and global balance beside cobb angles. Additionally they also found more correction in uninstrumented lumbar curve (5). In this study we measured these parameters and found no significant difference in global balance between bilateral segmental fixation and alternate fixation groups in Lenke 1 AIS patients.

In this study T1 tilt angle and clavicle angle were used to evaluate shoulder balance. Although these parameters found only partially correlated or non correlated with cosmetic apperance of shoulder in AIS patents (7,20), they frequently used in the literature (11,18,22). The current study demonstrate no difference in T1 tilt angle, clavicle angle and shoulder balance according to treatment strategy. Trunk shift, apical vertebral translation and coronal balance were parameters used to assess the global balance of the body pre and postoperatively in AIS (25,26). In

<table>
<thead>
<tr>
<th>Table I. — Preoperative coronal parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Proximal thoracic (°)</td>
</tr>
<tr>
<td>Main thoracic (°)</td>
</tr>
<tr>
<td>Lumbar (°)</td>
</tr>
<tr>
<td>Apical vertebral translation (mm)</td>
</tr>
<tr>
<td>Coronal balance (mm)</td>
</tr>
<tr>
<td>Trunk shift (mm)</td>
</tr>
<tr>
<td>T1 tilt angle (°)</td>
</tr>
<tr>
<td>Clavicle angle (°)</td>
</tr>
</tbody>
</table>

* unpaired sample t test, † Mann Whitney U test.

This study measured these parameters and found no significant difference in global balance between bilateral segmental fixation and alternate fixation groups in Lenke 1 AIS patients. Pedicle screws provides longer moment arm and better 3 column control compared with laminar hooks and for this reason segmental systems are currently decided to be the gold standard to correct deformities (5,15). As a result of these more correction of curves can be expected with bilateral segmental fixation. Lowenstein et al. compare all screw and hybrid constructs and found no significant difference between groups although better correction trend of main thoracic curves with all screw construct (17). Quan found no correlation between implant density and magnitude of coronal or sagittal correction in his study of 49 Lenke 1 AIS patients. Diametrically Dobbs et al. reported significant curve correction with pedicle screws versus hooks in major thoracic compensatory lomber C modifier curves. They evaluate apical vertebral translation and global balance beside cobb angles. Additionally they also found more correction in uninstrumented lumbar curve (5). In this study we measured these parameters and found no significant difference in global balance between bilateral segmental fixation and alternate fixation groups in Lenke 1 AIS patients.

In fact radiographic evaluation is not the only method that determines the coronal balance. Asher et al. reported posterior trunk surface topography of 44 idiopathic scoliosis patients treated with primary

DISCUSSION

Pedicle screw fixation for deformity surgery in thoracic spine became popular. It has been shown to be safe and accurate method and even in large curves can be used without pedicle screw related visceral or neurologic complications in experienced hands (8,12,19). The aim of our study was to compare two different treatment strategies for Lenke 1 adolescent idiopathic scoliosis retrospectively. There was no significant difference between the groups. Bilateral segmental pedicle screw fixation did not improve curve correction compared with unilateral or alternate segmental fixation.

In this study T1 tilt angle and clavicle angle were used to evaluate shoulder balance. Although these parameters found only partially correlated or non correlated with cosmetic apperance of shoulder in AIS patents (7,20), they frequently used in the literature (11,18,22). The current study demonstrate no difference in T1 tilt angle, clavicle angle and shoulder balance according to treatment strategy. Trunk shift, apical vertebral translation and coronal balance were parameters used to assess the global balance of the body pre and postoperatively in AIS (25,26). In
posterior instrumentation and arthrodesis to assess trunk deformity (1). Unfortunately we did not have a device or program measuring topography and clinical trunk deformity was not evaluated.

One of the most popular arguments on bilateral segmental fixation is loss of thoracic kyphosis. Lowenstein et al. demonstrated significant decrease of kyphosis with all screw construct versus hybrid constructs (17). In their recent meta-analysis Cao et al found hybrid constructs more powerful in restoring kyphosis than pedicle screw (4). In this study we could not assess the sagittal plane alterations pre or postoperatively due to non-standard lateral x rays of the patients.

There were some other limitations of the current study. Because of the retrospective design, clinical evaluation or quality of life of patients before and after the surgery could not be compared. Although groups were similar before surgery, implants were not all from the same manufacturer, so implant problems were disregarded.

In conclusion, in this study bilateral segmental fixation and alternate fixation treatment strategies produced similar corrections in AIS patients. This study showed that for a similar group of patients with Lenke I curves bilateral segmental fixation does not equal to more coronal correction compared to alternate fixation in AIS. Further investigations including quality of life and cosmetic evaluations needed to compare this strategies completely.

<table>
<thead>
<tr>
<th>Table II. — Postoperative coronal parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Proximal thoracic (°)</td>
</tr>
<tr>
<td>Main thoracic (°)</td>
</tr>
<tr>
<td>Lumbar (°)</td>
</tr>
<tr>
<td>Apical vertebral translation (mm)</td>
</tr>
<tr>
<td>Coronal balance (mm)</td>
</tr>
<tr>
<td>Trunk shift (mm)</td>
</tr>
<tr>
<td>T1 tilt angle (°)</td>
</tr>
<tr>
<td>Clavicle angle (°)</td>
</tr>
</tbody>
</table>

* unpaired sample t test, † Mann Whitney U test.

REFERENCES

9. Kim YJ, Lenke LG, Cho SK, Bridwell KH et al. Comparative analysis of pedicle screw versus hook...

