The purpose of this manuscript is to document results and complications of use of a regenerative dermal matrix skin substitute for coverage of extremity wounds. A retrospective review at 3 institutions identified 28 patients and 34 wounds who had undergone use of this material (Integra). Complications included failure in two patients (4 wounds). However, overall “take” of the regenerative matrix was 86.1%. In most cases, a split thickness skin graft was applied on average at 25 days following the initial procedure. Failures were associated with infection and irradiation of the surgical field. In this series, use of the dermal regenerative matrix was associated with a high rate of success for wound coverage, obviating the need for flap coverage or prolonged dressing changes in most cases. Further series are likely to refine the known indications and contraindications to use of this method.

Keywords: Integra; skin substitute; wound coverage; dermal matrix graft.

INTRODUCTION

Soft tissue coverage can be challenging, particularly in the setting of musculoskeletal surgery. Skin grafting may not be appropriate for all soft tissue beds, and is not possible directly over tendons, neurovascular structures, or bone. Previously these wounds had limited reconstructive options, and often surgeons relied upon rotational or pedicled flaps or microvascular free tissue transfer. However, such solutions are subject to tissue availability, donor site morbidity and require sometimes complex surgical and microsurgical procedures further increasing the morbidity of surgery. Such reconstructive options may require flap monitoring for viability and or immobilization. In addition, failures may leave limited options.

Recently, an acellular dermal regenerative matrix material (Integra, Integra Life Sciences, Plainsboro, NJ) has been developed to provide a substrate for wound coverage. This material provides a dermal substrate consisting of denatured bovine collagen and shark chondroitin sulfate. It is available as either a monolayer construct or as a bilayer construct with a silastic outer portion. The material and biological properties are altered by cross-linking methods and density, pore size, and chondroitin.
6-sulfate content. The silastic portion consists of 0.1 mm thick medical grade silastic, which is designed to control fluid egress to simulate the function of epidermis (5,16). It has previously been used for reconstruction of soft tissue wounds, particularly in the setting of burns, with satisfactory results (6,12,16,20). Early clinical results have been acceptable, and it has been used in a variety of challenging clinical settings, including exposed bone, irradiated tissue fields, and deep soft tissue defects (1,3,4,8,10,14,15,17,20,21). However, few large studies exist evaluating the use of this material in a clinical orthopedic setting. The purpose of our study is to provide a retrospective review of patients treated with this clinical material for purposes of extremity wound coverage in orthopedic practices at three institutions. The material was used in settings where simple primary closure or immediate skin grafting was not possible and free or pedicled tissue transfer would be another option for coverage.

MATERIALS AND METHODS

Following appropriate Institutional Board Review approval obtained at the three institutions involved in this study, (The Mayo Clinic, The University of Minnesota, and UMDNJ-New Jersey Medical School), the authors performed a retrospective review of patients who had undergone application of Integra for indications of soft tissue coverage. All patients from 2006 to 2012 were included in the series. Information from the medical records was extracted including patient demographics (age, gender, co-morbidities which might affect healing including diabetes mellitus, peripheral neuropathy, vascular disease, current smoking status), site and characteristics of wounds, information regarding index, prior and subsequent procedures, complications, and patient-related outcomes. Failures, including cause and complications, were specifically investigated. The data was shared among sites in a de-identified data set in concordance with the Institutional Review Board protocols of each site.

Surgical techniques

The surgical techniques and indications for application of this material have been described previously (16). In general, the surgical field is prepared and any non-viable tissue is debrided (Fig. 1). Any active infection or contamination is cleared prior to use (8,9). The bilayer dermal substitute is provided in an unmeshed or meshed version; application is similar. It is applied to the wound, cut to appropriate size, and sutured into place with nylon suture, ensuring that it does not overlap intact skin and that there is no excess or wrinkling of the graft (Fig. 2). If the unmeshed material is used, it may be meshed prior to application or “pie-crusted” with a number 15 blade following application. A bulky soft dressing or bolster is applied; a negative pressure vacuum assisted closure device is an alternative.
Rehabilitation and monitoring of the wound is similar to other methods of wound coverage and proceeds in the usual fashion. Typically, the color of the wound bed and matrix is monitored. Inosculation and neovascularization has been reported to begin as soon as 24 hours post application, particularly in association with use of negative pressure devices (2,13). Usually, the matrix has good “take” and the wound is ready for a second stage skin graft between 2-4 weeks; this is marked by the change in color of the wound bed to a yellowish-pink hue (8,16,19) (Fig. 3). At this point, the silastic layer may be peeled off and a full or partial thickness skin graft applied (Fig. 4). Alternatively, small defects may be allowed to granulate in over time. Wounds are followed until completion of healing (Fig. 5). Choice of use of bilayer or monolayer, meshed or unmeshed Integra, and timing (if any) of subsequent skin grafting was based upon the discretion of the treating surgeon.

RESULTS

Twenty-eight patients with 34 wounds underwent application of this material as either a bilayer (n = 11), monolayer (n = 22) or combination (n = 1) for purposes of wound coverage (Table I). There were 21 male and 7 female patients; average age was 49.5 years (range : 14-85 years). Patients were followed to completion of wound healing in all cases, and follow-up averaged 9.9 months. In two patients (3 wounds), the indication was for post infection soft tissue loss following resolution of the infection; in one patient and one wound, for soft tissue loss associated with chemotherapeutic extravasation, one patient/wound for scleroderma and exposed PIP joint; in 23 wounds for traumatic indications, and in six patients/cases for reconstruction following excision of a malignancy. Of these patients, a second stage procedure was performed in 26 cases, at an average time point of 25 days following the initial procedure. The second stage procedure was a thin full-thickness skin graft in two cases, a split thickness skin graft in 24 cases, and the wound was allowed to granulate in or heal by secondary intent in four cases; while the two patients (4 wounds) with failures had healing with dressing changes and negative pressure vacuum assisted wound closure (n = 1) or additional procedures. The overall complication rate was 21%; with a major complication (failure) rate of 6.9% (2 patients) and a minor complication rate of 13.8%.
in this series, failure was noted in 4 wounds (2 patients). These failures were associated with infection and smoking history in 3 wounds (1 patient) who was later successfully treated with a combination of soft tissue coverage techniques including use of the dermal matrix substitute; and with use of radiation therapy in another patient. We did, however, have a second patient who underwent radiation therapy at the site of the wound who healed without complications. In our series, a high number of patients had satisfactory healing.

Limitations of our series relate to the small number of patients with failures. The low number of failures make it difficult to draw conclusions from these outcomes, however, based upon our experiences and review of the literature, failures are associated with infection (8,9) and in one case in our series, with use of radiation therapy at the site. It is also possible that unknown or unrecognized sensitivities to the components of the dermal matrix substitute (bovine or shark materials) might be associated with failures, although one of the two patients who failed initially was later treated successfully with the dermal matrix substitute. Patients with exposed bone/muscle/tendon were treated successfully in this series. Each of the patients in this series might have been a candidate for flap coverage; however, this technique resulted in successful treatment of the wound deficit in most cases without donor site morbidity. This technique is particularly

Fig. 5. — The wound is followed until complete healing; a: Same patient as in figure 3b and 4 at 15 days following thin full thickness skin grafting; b: and at 59 days following skin grafting.
Table I. — Patient wound details

<table>
<thead>
<tr>
<th>Patient #</th>
<th>Age</th>
<th>Gender</th>
<th>Location</th>
<th>Wound type</th>
<th>Size (cm)</th>
<th>Exposed tissue</th>
<th>Comorbidities</th>
<th>Complication</th>
<th>% take</th>
<th>Additional procedures</th>
<th>Additional procedure(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48</td>
<td>m</td>
<td>dorsum hand/ wrist/volar forearm</td>
<td>post infection</td>
<td>10 × 14</td>
<td>tendon</td>
<td>DM</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>1</td>
<td>48</td>
<td>m</td>
<td>volar forearm</td>
<td>post infection</td>
<td>10 × 6</td>
<td>tendon</td>
<td>DM</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>2</td>
<td>67</td>
<td>f</td>
<td>thumb</td>
<td>resection SCC</td>
<td>2 × 1</td>
<td>tendon/bone</td>
<td>DM</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>3</td>
<td>54</td>
<td>m</td>
<td>index finger</td>
<td>trauma</td>
<td>1.5 × 3</td>
<td>tendon/bone</td>
<td>none</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>3</td>
<td>54</td>
<td>m</td>
<td>small finger</td>
<td>trauma</td>
<td>1.5 × 2</td>
<td>tendon/bone</td>
<td>none</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>4</td>
<td>83</td>
<td>m</td>
<td>dorsal hand</td>
<td>infection</td>
<td>10 × 5</td>
<td>tendon</td>
<td>DM</td>
<td>partial failure</td>
<td>85</td>
<td>0</td>
<td>dressing changes/ vac</td>
</tr>
<tr>
<td>5</td>
<td>71</td>
<td>f</td>
<td>dorsal PIP long finger</td>
<td>scleroderma chronic nonhealing wound</td>
<td>1 × 1.5</td>
<td>PIP joint</td>
<td>scleroderma</td>
<td>no</td>
<td>100</td>
<td>0</td>
<td>secondary intent</td>
</tr>
<tr>
<td>6</td>
<td>49</td>
<td>f</td>
<td>index middle phalanx (open fracture)</td>
<td>trauma (axe wound)</td>
<td>2 × 2</td>
<td>tendon/bone</td>
<td>none</td>
<td>no</td>
<td>100</td>
<td>0</td>
<td>secondary intent</td>
</tr>
<tr>
<td>7</td>
<td>79</td>
<td>m</td>
<td>dorsal hand</td>
<td>trauma (crush)</td>
<td>3 × 3</td>
<td>tendon/bone</td>
<td>coumadin</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>8</td>
<td>60</td>
<td>f</td>
<td>thumb (volar)</td>
<td>sarcoma s/p XRT and Wide exc; neurovascular and tendon reconstruction</td>
<td>5 × 4</td>
<td>tendon/nerve/ vessels</td>
<td>XRT</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>9</td>
<td>70</td>
<td>m</td>
<td>dorsal-ulnar hand</td>
<td>tumor (subQ lymphoma)</td>
<td>3 × 2</td>
<td>tendon</td>
<td>lymphoma/ chemo</td>
<td>no</td>
<td>100</td>
<td>0</td>
<td>secondary intent</td>
</tr>
<tr>
<td>10</td>
<td>73</td>
<td>m</td>
<td>dorsal hand</td>
<td>chemotherapy extravasation</td>
<td>3 × 4</td>
<td>tendon</td>
<td>chemo</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>f</td>
<td>dorsum hand</td>
<td>trauma</td>
<td>4 × 4</td>
<td>tendon, nerve, vessel</td>
<td>none</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>f</td>
<td>volar wrist</td>
<td>trauma</td>
<td>4 × 6</td>
<td>tendon, nerve, vessel</td>
<td>none</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>12</td>
<td>43</td>
<td>m</td>
<td>index finger</td>
<td>trauma</td>
<td>2.5 × 7</td>
<td>tendon</td>
<td>none</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>12</td>
<td>43</td>
<td>m</td>
<td>long finger</td>
<td>trauma</td>
<td>2.5 × 8</td>
<td>tendon</td>
<td>none</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>13</td>
<td>37</td>
<td>m</td>
<td>lower leg</td>
<td>trauma</td>
<td>15 × 12</td>
<td>muscle</td>
<td>none</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>14</td>
<td>44</td>
<td>m</td>
<td>hand</td>
<td>parachordoma excisions s/p WLE and brachytherapy</td>
<td>8 × 6</td>
<td>tendon</td>
<td>XRT</td>
<td>severe pain and drainage post STSG (BRACHYTHERAPY) + partial failure integra</td>
<td>10</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>15</td>
<td>55</td>
<td>m</td>
<td>thumb/hand</td>
<td>trauma</td>
<td>7 × 5</td>
<td>tendon, bone</td>
<td>none</td>
<td>no</td>
<td>100</td>
<td>0</td>
<td>secondary intent</td>
</tr>
<tr>
<td>16</td>
<td>32</td>
<td>m</td>
<td>dorsum hand</td>
<td>trauma</td>
<td>5 × 8</td>
<td>tendon</td>
<td>none</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>stsg</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------------------</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>17</td>
<td>21</td>
<td>f</td>
<td>index long and ring fingers</td>
<td>trauma</td>
<td>4 × 2</td>
<td>bone/tendon</td>
<td>none</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>18</td>
<td>72</td>
<td>f</td>
<td>TIBIA osteochondroma</td>
<td>trauma</td>
<td>5 × 7</td>
<td>bone</td>
<td>HTN</td>
<td>delayed healing</td>
<td>95</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>19</td>
<td>28</td>
<td>m</td>
<td>dorsal hand</td>
<td>trauma</td>
<td>7 × 10</td>
<td>bone/tendon</td>
<td>none</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>20</td>
<td>32</td>
<td>m</td>
<td>index</td>
<td>trauma</td>
<td>5 × 2</td>
<td>bone tendon</td>
<td>none</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>FTSG</td>
</tr>
<tr>
<td>21</td>
<td>61</td>
<td>m</td>
<td>volar long finger</td>
<td>trauma</td>
<td>2 × 4</td>
<td>tendon</td>
<td>DM/htn</td>
<td>swelling</td>
<td>100</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>m</td>
<td>tibia</td>
<td>trauma</td>
<td>5 × 6</td>
<td>bone/muscle</td>
<td>none</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>23</td>
<td>29</td>
<td>m</td>
<td>forearm/radial shaft</td>
<td>trauma-gun shot</td>
<td>10 × 5</td>
<td>bone/tendon</td>
<td>none</td>
<td>no</td>
<td>90</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>24</td>
<td>49</td>
<td>m</td>
<td>dorsal hand</td>
<td>trauma</td>
<td>5 × 4</td>
<td>tendon</td>
<td>none</td>
<td>Venous bleed</td>
<td>95</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>25</td>
<td>45</td>
<td>m</td>
<td>ulnar forearm</td>
<td>trauma</td>
<td>8 × 15</td>
<td>bone/tendon</td>
<td>none</td>
<td>no</td>
<td>100</td>
<td>2</td>
<td>STSG</td>
</tr>
<tr>
<td>26</td>
<td>38</td>
<td>f</td>
<td>volar ring finger</td>
<td>trauma</td>
<td>4 × 2</td>
<td>tendon</td>
<td>none</td>
<td>no</td>
<td>85</td>
<td>1</td>
<td>STSG</td>
</tr>
<tr>
<td>27</td>
<td>23</td>
<td>m</td>
<td>dorsal long finger</td>
<td>trauma/heat/crush</td>
<td>3 × 2</td>
<td>bone/tendon</td>
<td>Smoker+ thermal burn</td>
<td>infection & lack of healing</td>
<td>0</td>
<td>3</td>
<td>repeat I&D, rotation flap+ INTEGRA 3 × 2</td>
</tr>
<tr>
<td>27</td>
<td>23</td>
<td>m</td>
<td>dorsal ring</td>
<td>trauma/heat/crush</td>
<td>3 × 1.5</td>
<td>bone/tendon</td>
<td>smoker+ thermal burn</td>
<td>infection & lack of healing</td>
<td>0</td>
<td>3</td>
<td>repeat I&D, rotation flap+ INTEGRA 3 × 3.2</td>
</tr>
<tr>
<td>27</td>
<td>23</td>
<td>m</td>
<td>dorsal small</td>
<td>trauma/heat/crush</td>
<td>3.5 × 2</td>
<td>bone/tendon</td>
<td>smoker+ thermal burn</td>
<td>infection & lack of healing</td>
<td>0</td>
<td>3</td>
<td>free fasciocutaneous flap+ INTEGRA 3 × 3.5</td>
</tr>
<tr>
<td>28</td>
<td>85</td>
<td>m</td>
<td>dorsal hand</td>
<td>squamous cell</td>
<td>4.5 × 5</td>
<td>tendon</td>
<td>none</td>
<td>no</td>
<td>100</td>
<td>1</td>
<td>FTSG</td>
</tr>
</tbody>
</table>

DM = diabetes mellitus; HTN = hypertension; XRT = radiation therapy; STSG = split thickness skin graft; FTSG = full thickness skin graft.
useful in tumor excisions, particularly those in
which adequate margins need to be assessed by per-
manent section. A first stage resection and coverage
can be achieved; margins assessed by permanent
pathology, and if needed, additional margins resect-
ed at a second date, which typically corresponds to
application of a skin graft.

Further large and well-designed prospective se-
ries are likely to help determine the limitation and
utility of this technique and substance for coverage
of challenging wounds.

CONCLUSIONS

Use of a dermal substitute matrix resulted in a
high rate of healing of wounds in this series. Further
large and well-designed prospective series are likely
to help determine the limitation and utility of this
technique and substance for coverage of challeng-
ing wounds.

Conflict of interest: Julie E. Adams has no con-
icts, Marco Rizzo is a consultant for Synthes (no
payments) and has a grant pending from SBI and
TriMed.

Dr. Capo is a consultant for DePuy Synthes,
Wright Medical, and Integra Life Sciences. He has
received payment for lectures from Integra Life
Sciences.

Ethical statement: All authors (Julie E. Adams,
John T. Capo and Marco Rizzo blinded for review)
adhere to the ethical standards described by the
Committee on Publication Ethics and the Interna-
tional Committee of Medical Journal Editors. The
study was completed under an IRB-approved proto-
col.

All procedures followed were in accordance with
the ethical standards of the responsible committee
on human experimentation (institutional and nation-
al) and with the Helsinki Declaration of 1975, as
revised in 2008.

REFERENCES

1. Bache SE, Watson SB. Bedside application of integra after
debridement of necrotising fasciitis. J Plast Reconstr
Aesthet Surg 2011; 64: 559-560.

2. Baldwin C, Potter M, Clayton E, Irvine L, Dye J. Topi-
cal negative pressure stimulates endothelial migration and
proliferation: a suggested mechanism for improved inte-

3. Barnett TM, Shilt JS. Use of vacuum-assisted closure and
a dermal regeneration template as an alternative to flap re-
construction in pediatric grade IIIB open lower-extremity

4. Branski LK, Herndon DN, Pereira C, Mleak RP, Celis MM, Lee JO et al. Longitudinal assessment of In-
tegra in primary burn management: a randomized pediatric

5. Burke JF, Yannas IV, Quinby WC, Jr., Bondoc CC,
Jung WK. Successful use of a physiologically acceptable
artificial skin in the treatment of extensive burn injury. Ann

6. Campitiello E, Della Corte A, Fattopace A, D’Acunzi D,
Canonico S. The use of artificial dermis in the treatment of
chronic and acute wounds: regeneration of dermis and

7. Friedrich JB, Katolik LI, Vedder NB. Soft tissue recon-
struction of the hand. The Journal of hand surgery 2009;
34 : 1148-1155.

8. Heimbach D, Luterman A, Burke J, Cram A, Herndon
D, Hunt J et al. Artificial dermis for major burns. A multi-
208 : 313-320.

on the use of collagen/glycosaminoglycate skin substitute-
six years of experiences with artificial skin in 15 German

10. Lee LF, Porch JV, Spenler W, Garner WL. Integra in
lower extremity reconstruction after burn injury. Plastic
and reconstructive surgery 2008 ; 121 : 1256-1262.

11. Levin LS. Principles of definitive soft tissue coverage

12. Moiemen N, Yarow J, Hodgson E, Constantinides J,
Chipp E, Oakley H et al. Long-term clinical and
histological analysis of Integra dermal regeneration tem-
plate. Plastic and reconstructive surgery 2011 ; 127 : 1149-
1154.

13. Moiemen NS, Yarow J, Kamel D, Kearns D,
Mendonca D. Topical negative pressure therapy: does it
accelerate neovascularisation within the dermal regenera-
tion template, Integra? A prospective histological in vivo

14. Moore C, Lee S, Hart A, Watson S. Use of Integra to re-
surface a latissimus dorsi free flap. Br J Plast Surg 2003 ;
56 : 66-69.

15. Rashid OM, Nagahashi M, Takabe K. Management of
massive soft tissue defects: The use of INTEGRA(R) arti-
ficial skin after necrotizing soft tissue infection of the chest.

16. Rizzo M. The use of Integra in hand and upper extremity
surgery. The Journal of hand surgery 2012 ; 37 : 583-
586.

