Late Onset Tibia Vara. Acute Correction Strategy: Proper Case Selection and a Simple External Fixation Technique

Ashraf A. KHANFOUR, Mahmoud EL-ROSASY

From the Departments of Orthopaedic Surgery, Damanhur National Medical Institute, Damanhur

INTRODUCTION

Late-onset tibia vara or Blount’s disease constitutes the most common cause of pathologic genu varum in late childhood and adolescence. Most authors consider it as a juvenile form if the onset of the disease is between 4-10 years and as an adolescent form if its onset is after 10 years of age (2,3,17,24,46). Several treatment modalities were described for these cases as proximal tibial osteotomy, growth modulation, and medial plateau elevation that are either carried out as an isolated procedure or in combination (2,4,7,18,31,50). However, proximal tibial osteotomy is still the standard surgical management for late onset cases where the researchers observed that the proximal tibial physis typically grew symmetrically following this osteotomy (1,3,7,16,18). After osteotomy, either acute (6,11,13,14,19,26,29,34,45,49,52,56) or gradual correction strategies were described, where each has its pros and cons.

The aim of this study was to verify the proper selection criteria of cases with late onset tibia vara amenable to successful acute correction strategy using a homogenous patient group with clear inclusion criteria; all the cases were fixed by a low profile semicircular fixator module.

Thirty legs in 20 patients (11 boys, nine girls) with late onset tibia vara, treated in our department between January 2005 and February 2008, that complied well with the assigned inclusion criteria constituted the material of this prospective study. Their mean age was 10.4 years (range, 6-14 years). They were all managed using the same modality that was acute correction based on the osteotomy rule II concept and fixed by a low profile miniature Ilizarov fixator module.

After a mean follow up period of 5.9 years (range, 5-7) only (13%) of the cases showed recurrence.

Proper selection of cases with late onset tibia vara undergoing acute correction strategy is of utmost importance for the sake of a successful outcome. On the other hand, the low profile simplified fixator module used is a handy and a compliant osteotomy fixation tool.

Keywords: late onset tibia vara, acute correction, external fixation, ilizarov.

No benefits or funds were received in support of this study.

were described. While the gradual (1,2,7,8,10,15,18,44,48,51,54) correction strategy using distraction osteogenesis has its crucial indication in certain situations like addressing severe deformity or a coincident significant anatomical limb length discrepancy, it requires a high degree of patient compliance and still has its recorded complications (16,17,37,44,51,54). Conversely, acute correction strategy has its merits as being more compliant to the patient and requires less regular follow up visits, but it needs proper case selection to get a successful outcome. These selection criteria were not clearly reported in the literature published on this topic.

The aim of this study was to verify the proper selection criteria of cases with late onset tibia vara amenable to successful acute correction strategy using a standardized external low profile Ilizarov fixator module.

PATIENTS AND METHODS

Thirty legs in 20 patients (11 boys, nine girls) with late onset tibia vara who presented to the orthopedic department between January 2005 and February 2008 were included in this prospective study. The inclusion criteria were: (1) maximal angular deformity of -40, (2) in unilateral cases, the calculated expected post-correction limb length discrepancy is not more than 1.5 cm and (3) belonging to a low grade group Langenskiöld classification (Stage I-IV). The exclusion criteria were: (1) high grade group Langenskiöld classification (Stage V-VI) necessitating more than a single procedure, (2) presence of overgrowth of the fibula in relation to the tibia that may even protrude up to the knee joint line, (3) the calculated expected post-correction limb length discrepancy is more than 1.5 cm, and (4) deformity more than 40°. The mean age of the patients at the time of operation was 10.4 years (range, 6-14 years). Three cases were right sided, six were left sided, and 11 were bilateral. Fourteen cases were in stage II, nine in stage III, and seven in stage IV according to Langenskiöld’s classification (23,25). The mean preoperative anatomical frontal tibiofemoral angle was -24.6° (range, -15-35°, SD 5.07°). The mean tibial internal torsion was 15.33° (range, 0-40°, SD 10.41°) (Table 1). All the cases were treated using the same strategy which was acute correction based on the osteotomy rule II concept and fixation using a low profile miniature Ilizarov fixator module. This osteotomy rule would be attained by designing the axis of correction of angulation (ACA) to pass through the level of the center of rotation of angulation (CORA) which is located here juxta-articularly; while the osteotomy was done at another level, just distal to the tibial tuberosity. So lateral translation will accompany angulation correction and this will consequently align the mechanical axis of the limb.

One child (case no. 19) had an associated distal femoral valgus (mL DFA = 75°). Another child with bilateral disease (case no. 13), presented with -45° angulation on the left side that necessitated gradual correction and so this limb was excluded from this study.

Preoperative planning

(1) Determination of the knee joint malalignment and malorientation radiologically using the malalignment test. The magnitude of the varus deformity was measured using the anatomical tibiofemoral angle (40,41). (2) Defining the Langenskiöld stage (23,25). (3) Assessment of the tibial internal torsion clinically by the thigh-foot angle (53). (4) Assessment of the limb length inequality by the block method (47). (5) In unilateral cases, calculation of the expected post-correction limb length discrepancy (LLD): in these cases as the CORA lies juxta-articular or even inside the knee joint line itself, the expected limb length after correction will be the result of the summation of the ipsilateral anatomical lengths of the femur and the tibia. So, the expected LLD was evaluated by comparing the anatomical limb length of the affected and the sound limb (22).

Operative technique

In all cases, the Ilizarov external fixator module was preoperatively constructed. The frame consisted of two symmetrical femoral arches connected together by two or three connecting rods. Rancho cubes and Schanz clamps were then mounted to it. Two symmetrical straight plates substituted the arches in cases with short legs (Fig. 1). Bilateral deformities were corrected on two successive sessions. The procedure was performed under general anesthesia without tourniquet application. Fibulotomy was done at the level of the mid leg. Under the C-arm control, while the patella was facing directly forward and the limb was halted in this position by the assistant, a 6 mm bicortically fixed Schanz screw was inserted from the medial aspect, parallel to the ground, just distal to the proximal tibial epiphyseal plate and parallel to the proximal knee joint orientation line (Fig. 2). A parallel second distal Schanz screw was then inserted.
Table 1. — Patient demography.

<table>
<thead>
<tr>
<th>No.</th>
<th>Age</th>
<th>Sex</th>
<th>Side</th>
<th>Lang. Stage</th>
<th>Deformity Components</th>
<th>Degree of Angular deformity (Degrees)</th>
<th>Time spent in the fixator (M)</th>
<th>Follow up (Y)</th>
<th>Recurrence of the deformity</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>m</td>
<td>Bil</td>
<td>III</td>
<td>Varus Intorsion procurvatum Associated Angular deformity</td>
<td>-35 40 - - 45 4 5 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>f</td>
<td>Bil</td>
<td>III</td>
<td>-30 40 - - 40 3 6 -5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>f</td>
<td>Bil</td>
<td>III</td>
<td>-20 20 - - 30 3 6 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>f</td>
<td>R</td>
<td>II</td>
<td>-20 - - - 30 4 6 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>f</td>
<td>R</td>
<td>II</td>
<td>-25 - - - 35 4 6.5 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>f</td>
<td>Bil</td>
<td>R III</td>
<td>-20 20 - - 30 3 5 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>m</td>
<td>Bil</td>
<td>R II</td>
<td>-30 15 - - 40 3 5 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>m</td>
<td>Bil</td>
<td>R III</td>
<td>-25 15 - - 35 3 5 -5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>f</td>
<td>L</td>
<td>IV</td>
<td>-25 20 - - 35 3 6 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>m</td>
<td>L</td>
<td>II</td>
<td>-25 25 - - 35 4 5 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>m</td>
<td>L</td>
<td>II</td>
<td>-20 15 - - 30 4 5 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>m</td>
<td>Bil</td>
<td>R II</td>
<td>-20 10 - - 30 4 6 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>m</td>
<td>Bil</td>
<td>R III</td>
<td>-30 10 - - 40 3 6.5 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>m</td>
<td>L</td>
<td>III</td>
<td>-25 - - - 35 3 7 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>m</td>
<td>Bil</td>
<td>R IV</td>
<td>-30 15 - - 40 4 6 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>f</td>
<td>L</td>
<td>IV</td>
<td>-25 10 - - 35 3.5 6 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>14</td>
<td>m</td>
<td>Bil</td>
<td>R III</td>
<td>-20 - - - 30 4 6 -5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>m</td>
<td>Bil</td>
<td>R II</td>
<td>-20 10 - - 30 3 6 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>f</td>
<td>R</td>
<td>IV</td>
<td>-25 10 mLDF=75 35 4 7 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>f</td>
<td>L</td>
<td>IV</td>
<td>-25 15 - - 35 3 7 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
- Transient common peroneal nerve palsy
- Excluded (Corrected by Gradual Strategy)
using a Rancho cube as a guide. A percutaneous straight cut corticotomy was then done through a 2-3 cm anterior incision just distal to both the tibial tuberosity and the distal pin using multiple drill holes with a 4.5 mm drill pit. Prophylactic percutaneous anterior compartment fasciotomy was performed using a long blunt-nose scissor through the same corticotomy incision. Acute correction was performed in this sequence: derotation, translation, angulation, and lastly extension if procurvatum was present. Derotation was done until the second toe of the plantigrade foot aligned with the patella. As a rule of thumb, for each degree of angular correction, 1% lateral translation of the distal bone end on the proximal one at the osteotomy site was done and monitored under the C-arm (Fig. 2). After obtaining the required angular correction, the resultant increase in the surrounding soft tissue tension would aid the bone ends to jam and lock at the osteotomy site. Now, this corrected position was firmly halted by the assistant. The pre-assembled construct was then fixed to the previously inserted proximal two Schanz screws in the metaphyseal area. Consequently, the distal segment was fixed to the construct by similar two Schanz Screws. The mechanical axis alignment was then checked under the C-arm using the electrocautery cable stretched between the centers of the hip and the

Fig. 1. — The construct modules used; A: built by 2 symmetrical femoral arches. B: built by 2 symmetrical plates

Fig. 2. — Intra-operative C-arm view after achieving the required correction demonstrating (1) The metaphyseal Schanz screws are parallel to the proximal knee joint orientation line and distal to the proximal tibial epiphyseal plate. (2) The mechanical axis highlighted by the shadow of the electrocautery cable passes through the centre of the knee. (3) Lateral translation of the distal bone end on the proximal one.
ankle joints, the shadow of this cable crossing the center of the knee joint. Fine tuning of correction was feasible at this stage (Fig. 2). 5° Valgus overcorrection to an anatomical tibio-femoral angle of 10° was intentionally attained in all cases (normally 5° valgus). At the end, the fixation was augmented by the addition of another one or two pins to each segment in a different divergent plane (Fig. 3). The case which presented with the associated distal femoral valgus (case no. 19), was corrected on the femoral side firstly using the same technique and a similar construct; then the tibial deformity was synchronously corrected (Fig. 4). In no cases we performed peroneal nerve release.

Patients were encouraged to do active knee exercises once the postoperative pain was relieved. Weight bearing as tolerated was allowed after 3-7 days using crutches. Follow up after 2 weeks for removal of stitches and dressing. Then follow up radiography every 1 ½ months. Complete union was verified both radiologically and clinically when the patient could bear weight comfortably after disconnecting the two arches. Removal of the fixator was done under anesthesia for good toilet and cleaning of the pin tracts.

RESULT

The mean time spent in the fixator was 3.5 months (range, 3-4 months, SD = .65). The mean degree of angular correction was 33.33° (range, 25°-45°, SD 4.0°). All deformities were corrected as planned. There was no postoperative loss of correction during consolidation. All cases attended the final follow-up (mean, 5.9 years; range, 5-7) (Fig. 5). All cases suffered one or more attacks of superficial pin tract infection especially in the metaphyseal pins that resolved successfully on local toilet and oral antibiotic therapy. Transient common peroneal nerve palsy occurred in two cases that was recovered spontaneously on the 8th and 12th week respectively. This may be due to a stretch on the nerve especially in case no. 19 where both the distal femoral and proximal tibial corrections were carried out synchronously. Recurrence was defined when the anatomical tibiofemoral angle became less than 0° in the varus direction (negative values).
and it occurred in four out of 30 legs (13%). Three of them were classified as Langenskiöld stage III and showed minimal recurrence (-5°). The fourth case was Langenskiöld stage IV and showed significant recurrence (-10°). These cases were counselled for regular close follow up for a possibility of the need of another interference. No significant LLD (> 1.5 cm) was recorded at the end of the follow up.

DISCUSSION

As Blount’s disease includes different types and in addition each type has a broad array of deformity components, determining an explicit selection criteria for a given modality of treatment became a necessity for the sake of a successful outcome. Either acute or gradual correction after proximal tibial osteotomy are both a well-established treatment strategy for the late onset tibia vara, with each its pros and cons (2,5,12,13,17,36,52,54,56). While the gradual deformity correction strategy is considered to be more accurate by some authors (16,32,42), others stated that evidence for this was lacking, although a higher incidence of peroneal nerve palsy was recorded after acute correction which was fortunately transient. In a great systematic review by Gilbody J et al in 2009, they failed to find proper case selection criteria for each correction strategy, as most of the articles included in their work were retrospective, of small sample size, often including quite different etiologies of genu varus and also including patients with early and late-onset Blount’s disease together, and lastly there was no standardization for deformity description or defining recurrence (17).

In this present study the material was composed of a homogeneous patient group with clear inclusion and exclusion criteria whom were subjected to a standardized modality of correction and fixation. Cases with significant limb length discrepancy (LLD), high Langenskiöld grade, or overgrowth of the proximal fibula were excluded from this study. For cases with expected post-correction significant residual LLD (> 1.5 cm), many authors described the use of a combined strategy of both acute correction of the angular component of the deformity, followed by gradual continuing lengthening but they found that these cases significantly had a poorer bone healing. They assumed this to both, the great insult that occurs to the periosteum together with the decrease in the contact cross sectional area between the divided bone ends that results after carrying out a high degrees of acute correction (12,16, 21,30,35,36,56). And accordingly, these cases are better corrected gradually form the start.
On the other hand, in cases with a high grade Langenskiöld stage (stage V, VI), a consensus exists that a single procedure is generally not enough and either adjunctive growth modulation procedures or medial tibial plateau elevation are required (4,20,31,50,57). Lastly, cases with overgrowth of the proximal fibula in relation to the tibia, unipolar lengthening of the tibia in relation to the fibula is needed to level the proximal tibio-fibular joint (5). So, in the three above conditions either gradual correction or multiple procedures are required.

Considering limb length inequality in general, there are two types of shortening, geometrical or true. A geometrical (mechanical) shortening is present in case of angular deformity of the limb where the mechanical limb length (a straight line from the most proximal subarticular bone of the femoral head to the subarticular bone at the center of the ankle mortise on the long both lower limb scanogram) is shorter than that of the sound limb due to the loss of co-linearity of its hip, knee, and ankle. A true (anatomical) shortening is present when the summation of the individual anatomical bony segments forming the limb – tibia and femur – are shorter than that of the sound limb (2,22,28,38). Both Kessler AC et al and Magnussen RA et al concluded that the resulted actual limb length after angular deformity correction was within a 0.7 cm

Fig. 5. — A: Preoperative full leg length scanogram of a nine years old female with a right sided juvenile onset Blount’s disease showing varus (anatomic Tibiofemoral angle (aTF) was -35°). B: Postoperative scanogram showing 5° overcorrection (aTF angle became 10°). C: End of follow up scanogram showing no recurrence.
error less than the calculated value in the pre-operative planning and they attributed this to the bone void occurring at the osteotomy site (22, 28).

In the pediatric age group, the ideal form of fixation after corticotomy remains controversial, (13, 40, 41, 49). Although internal fixation of the proximal tibial osteotomy is more compliant to the patient, they hardly align the mechanical axis (49). This is because the CORA in these patients lies juxta-articularly while the osteotomy cut is forcefully located away from it to avoid physeal injury in these patients. This will lead to the occurrence of a secondary translational iatrogenic malalignment of the mechanical axis of the limb if varus angulation correction was carried out without lateral translation. This translation is difficult to be achieved or maintained using internal fixation. Consequently, the external fixator continues to be a more attractive fixation tool as it easily fixes the bone after both angulation and translation (2, 27, 39-41, 48). Other advantages of external fixators are: secure fixation to the small proximal tibial segment, the ability for dynamic compression, the possibility for minimal postoperative adjustments, and enabling the patients for early postoperative weight bearing (2, 6, 13, 16, 52, 56).

Regarding the available types of the external fixators used, it was found that while the unilateral fixators are weak and less modular, the circular fixators on the contrary are ideal for both correction and limb length equalization. But the latter are unfortunately bulky and noncompliant for the patients, require complex planning, laborious preconstruction of the frame and a protracted learning curve of the surgeons (2, 5, 8, 15, 37, 42, 54). So, it is better reserved for cases with severe deformities necessitating gradual correction or lengthening. In recent years, new generations of multi-axial correcting unilateral fixators with improved versatility emerged but unfortunately they are not handy (9, 33, 42, 43, 53). In this study, we used a low profile miniature module built up from Ilizarov fixator accessories which is easily accessible.

Although there is a consensus on the necessity of attaining overcorrection, there was no agreement on its amount in the literature (3, 46). In this study, 5° overcorrection was assigned to offload the sick upper medial tibial physis encouraging its recovery.

Generally, the recorded rate of recurrence of varus deformity in Blount’s disease has been found to be in the range of 30% to 100% (6). In this study, at the end of the follow up, a good result was obtained with only 13% of cases showing recurrence. This could be attributed to the proper case selection for the given strategy of treatment, comprehensively addressing all the components of the deformity, and achieving acceptable overcorrection offloading the sick medial epiphysis encouraging its articular/epiphyseal recovery.

A shortcoming of this study is the relatively small number of cases and the lack of a randomized control group for comparative study but this was due to both the uncommon nature of these category of patients as well as the restriction for the inclusion criteria used.

We believe that proper selection of cases with late onset tibia vara undergoing acute correction is of utmost importance for the sake of a successful outcome. On the other hand, the low profile simplified fixator module used is a handy and a compliant osteotomy fixation tool.

REFERENCES

