Late development of malignant fibrous histiocytoma at the site of a giant cell tumour 38 years after initial surgery

Keiichi Muramatsu, Koichiro Ihara, Tomoyuki Miyoshi, Yasuhiro Kawakami, Daisuke Nakashima, Toshihiko Taguchi

From Yamaguchi University School of Medicine, Yamaguchi, Japan

The authors report on a patient who developed a malignant fibrous histiocytoma at the site of a benign giant cell tumour, which had been treated by curettage 38 years previously. This latency period is, to their knowledge, the longest yet reported. This female patient was initially treated for a benign giant cell tumour of the proximal tibia when she was 33 years old; she underwent curettage and Kiel bone grafting. She had not received radiation therapy. Twenty eight years later, she underwent a second operation due to recurrence of a tumour. No specific histological diagnosis was possible; histology suggested a benign tumour, however compatible with a low-grade malignant potential but not associated with giant cell tumour. The patient underwent a third operation, with extensive curettage and total knee arthroplasty 38 years after the initial surgery, because of progressive knee pain. Postoperative histopathology study showed high-grade malignant fibrous histiocytoma. Finally, she underwent above-knee amputation because of uncontrollable progression of the tumour. The use of xenogenic bone graft, bone cement and associated bone necrosis potentially contributed to the development of a malignant tumour adjacent to the primary giant cell tumour.

Keywords: giant cell tumour; malignant fibrous histiocytoma; malignant transformation; bone.

INTRODUCTION

Giant cell tumour (GCT) of bone develops adjacent to the subchondral bone of major joints and shows a locally destructive behaviour. GCT is thought to originate at the metaphyseo-epiphyseal junction and may extend into the metaphysis. The distal femur and proximal tibia are most often involved. Although GCT is classified histologically as a benign tumour, its clinical course varies and can sometimes mimic a malignant tumour. Local recurrence rates following surgery have been reported to range from 4 to 50% (9,10).

Malignant transformation at the site of a previously treated GCT is a rare but recognized complication. In most cases, the primary GCT was treated with radiation therapy. To our knowledge, only 16 cases have been well documented in the

Keiichi Muramatsu, MD, PhD, Orthopaedic surgeon, Associate professor.
Tomoyuki Miyoshi, MD, Orthopaedic surgeon, Fellow.
Yasuhiro Kawakami, MD, Orthopaedic surgeon, Resident.
Daisuke Nakashima, MD, Orthopaedic surgeon, Resident.
Toshihiko Taguchi, MD, Orthopaedic surgeon, Professor. Department of Orthopaedic Surgery, Yamaguchi University School of Medicine, Yamaguchi, Japan.
Koichiro Ihara, Orthopaedic surgeon, Chairman. Department of Orthopaedic Surgery, Kannon Medical Center, Yamaguchi, Japan.
Correspondence: Keiichi Muramatsu, Department of Orthopaedic Surgery, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan. E-mail: muramatsu@yamaguchi-u.ac.jp
English literature in which secondary malignancies have arisen in non-irradiated areas (1-5,7,8,11,12,14) (Table I). The time interval between primary surgery for GCT and the diagnosis of malignant transformation has been very long, ranging from 7 to 25 years.

We report here a case of malignant fibrous histiocytoma (MFH) that arose at the site of a previously curetted GCT 38 years after initial surgery. This patient had not received radiation treatment. We discuss the aetiology of this MFH and the most appropriate treatment.

CASE REPORT

A 33-year-old woman presented with left knee pain in 1973. She consulted the general hospital in her home town and a bone tumour was identified at the proximal tibia. According to her medical chart, an osteolytic multi-lobular tumour extended into the medial plateau. (Radiographs and histological slides were lost and unavailable for publication because the initial operation was performed 38 years previously). The appearance and epiphyseal location suggested a GCT of the bone. Curettage and xenogeneic Kiel bone grafting was performed in the same year. A yellowish and brown tumour was resected piecemeal. histologically, the tumour comprised of many multinucleated giant cells arranged in a background of mononuclear stromal cells. There were few findings of mitosis and atypism in the tumour cells. The tumour was diagnosed as a typical benign GCT.

After surgery, the patient was asymptomatic for the following 28 years until 2002, when she began to experience progressive pain in her left knee. She was referred to our university hospital for an unknown bone tumour of the proximal tibia. A radio graph showed that bone cement was present just beneath the medial subchondral bone at the tibial plateau (Fig. 4 A & B). Computed tomography revealed a fracture of the subchondral bone. MRI showed an area with abnormal signal adjacent to the bone cement (Fig. 5). Pre-operatively, the diagnosis was late collapse of the subchondral bone at the medial tibial plateau. Removal of the bone cement and reconstruction with total knee arthroplasty and fibula grafting was performed. Surprisingly, the histological findings were completely different to those of the previous lesion treated in 2002. Post-operative histopathological examination showed a high-grade MFH consisting of anaplastic cells with atypical nuclei juxtaposed with zones of the previous lesion (Fig. 6). The Ki67 monoclonal antibody index was approximately 20% positive, thus showing high malignancy. No evidence was found of multinucleated giant cells or GCT.

Following the third surgical intervention, the malignant tumour progressively invaded the tibial canal and the distal end of the tibia, leading to a pathological fracture of the tibia. In February 2011, the patient underwent an above-knee amputation. Post-operative chemotherapy was not given due to her age. She had no local recurrence or distant metastasis at final follow-up of 1 year.
Table I. — Well documented case reports of late development of malignant tumour at the site of a giant cell tumour, not associated with radiotherapy

<table>
<thead>
<tr>
<th>Author/year (ref)</th>
<th>Age (Initial)</th>
<th>Location</th>
<th>Primary treatment</th>
<th>Interval (yrs)</th>
<th>Symptom</th>
<th>Radiology</th>
<th>Histology</th>
<th>Final treatment</th>
<th>Metastasis</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock/1986(12)</td>
<td>35/ F</td>
<td>Dist femur</td>
<td>Curettage</td>
<td>22</td>
<td>NR</td>
<td>NR</td>
<td>Fibrosarcoma</td>
<td>Amputation</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Gitelis/1989(3)</td>
<td>63/ M</td>
<td>Dist femur</td>
<td>Excision</td>
<td>25</td>
<td>Swelling</td>
<td>Osteolytic</td>
<td>Fibrosarcoma</td>
<td>Amputation</td>
<td>Multiple</td>
<td>NR</td>
</tr>
<tr>
<td>Hefiti/1992(5)</td>
<td>31/ M</td>
<td>Prox tibia</td>
<td>Curettage</td>
<td>7</td>
<td>Pain</td>
<td>Osteoblastic</td>
<td>Osteosarcoma</td>
<td>Chemo Amputation</td>
<td>Lung</td>
<td>DOD</td>
</tr>
<tr>
<td>Ortiz-Cruz/1995(11)</td>
<td>29/ M</td>
<td>Dist femur</td>
<td>Curettage</td>
<td>18</td>
<td>Pain</td>
<td>Osteolytic</td>
<td>MFH</td>
<td>Chemo Wide resect</td>
<td>None</td>
<td>NED</td>
</tr>
<tr>
<td>Sakkers/1997(14)</td>
<td>25/ M</td>
<td>Prox tibia</td>
<td>Curettage</td>
<td>20</td>
<td>Pain</td>
<td>Osteolytic</td>
<td>MFH</td>
<td>Chemo Wide resect</td>
<td>Multiple</td>
<td>NR</td>
</tr>
<tr>
<td>Brien/1997(2)</td>
<td>18/ M</td>
<td>Prox tibia</td>
<td>Curettage</td>
<td>6</td>
<td>Chest pain</td>
<td>Healed</td>
<td>Osteosarcoma</td>
<td>Thoracotomy</td>
<td>Lung</td>
<td>DOD</td>
</tr>
<tr>
<td>Mori/2000(8)</td>
<td>28/ F</td>
<td>Prox tibia</td>
<td>Curettage</td>
<td>25</td>
<td>Pain</td>
<td>Osteolytic</td>
<td>MFH</td>
<td>Chemo Wide resect</td>
<td>None</td>
<td>NED</td>
</tr>
<tr>
<td>Marui/2001(8)</td>
<td>31/ F</td>
<td>Prox tibia</td>
<td>Curettage</td>
<td>15</td>
<td>Pain</td>
<td>Osteolytic</td>
<td>MFH</td>
<td>Chemo Amputation</td>
<td>None</td>
<td>NED</td>
</tr>
<tr>
<td></td>
<td>41/ M</td>
<td>Dist femur</td>
<td>Curettage</td>
<td>13</td>
<td>Pain</td>
<td>Osteolytic</td>
<td>Osteosarcoma</td>
<td>Chemo Amputation</td>
<td>Lung</td>
<td>DOD</td>
</tr>
<tr>
<td>Bertoni/2003(1)</td>
<td>37/ M</td>
<td>Dist femur</td>
<td>Curettage</td>
<td>16</td>
<td>NR</td>
<td>NR</td>
<td>MFH</td>
<td>Chemo Amputation</td>
<td>None</td>
<td>NED</td>
</tr>
<tr>
<td></td>
<td>77/ M</td>
<td>Dist femur</td>
<td>Curettage</td>
<td>27</td>
<td>NR</td>
<td>NR</td>
<td>Osteosarcoma</td>
<td>Radiotherapy</td>
<td>Lung</td>
<td>DOD</td>
</tr>
<tr>
<td></td>
<td>42/ M</td>
<td>Prox tibia</td>
<td>Curettage</td>
<td>16</td>
<td>NR</td>
<td>NR</td>
<td>Osteosarcoma</td>
<td>Amputation</td>
<td>None</td>
<td>NED</td>
</tr>
<tr>
<td></td>
<td>47/ M</td>
<td>Prox femur</td>
<td>Curettage</td>
<td>22</td>
<td>NR</td>
<td>NR</td>
<td>Osteosarcoma</td>
<td>Radiotherapy</td>
<td>Lung</td>
<td>DOD</td>
</tr>
<tr>
<td></td>
<td>72/ M</td>
<td>Prox tibia</td>
<td>Curettage</td>
<td>27</td>
<td>NR</td>
<td>NR</td>
<td>Osteosarcoma</td>
<td>Amputation</td>
<td>None</td>
<td>NED</td>
</tr>
<tr>
<td></td>
<td>62/ F</td>
<td>Prox radius</td>
<td>Curettage</td>
<td>7</td>
<td>NR</td>
<td>NR</td>
<td>Osteosarcoma</td>
<td>Resection</td>
<td>None</td>
<td>NED</td>
</tr>
<tr>
<td>Grote/2004(4)</td>
<td>35/ F</td>
<td>Iliac crest</td>
<td>Resection</td>
<td>10</td>
<td>Swelling</td>
<td>Osteolytic</td>
<td>Osteosarcoma</td>
<td>Chemo Wide resect</td>
<td>None</td>
<td>NED</td>
</tr>
<tr>
<td>Present case</td>
<td>33/ F</td>
<td>Prox Tibia</td>
<td>Curettage</td>
<td>38</td>
<td>Pain</td>
<td>Osteolytic</td>
<td>MFH</td>
<td>Amputation</td>
<td>None</td>
<td>NED</td>
</tr>
</tbody>
</table>

NR = not reported; DOD = dead of disease; NED = no evidence of disease; Chemo = chemotherapy; MFH = malignant fibrous histiocytoma.
DISCUSSION

Malignant transformation of GCT occurs most frequently after radiation therapy (1). The incidence of a secondary malignancy arising at the site of a previously irradiated GCT ranges from 3.6% to 30% (1). Previously described malignancies occurring secondary to GCT have been fibrosarcoma, osteosarcoma and MFH (1-5,7,8,11,12,14). The survival rate for these patients has been poor due to the aggressive behaviour of such tumours. It is uncertain whether the sarcomas arise as a side-effect of the irradiation, or through malignant transformation of the GCT independently of the irradiation.

A review of the literature by Ortiz-Cruz et al (11) revealed 16 cases of malignant transformation of GCT without radiation therapy. These cases involved primary malignant GCT and early recurrence within 5 years. To our knowledge, only 16 cases have been documented in which secondary malignancies have subsequently arisen in non-irradiated areas (Table I). Among them, Bertoni et al (1) reported 5 cases with secondary malignancy after surgical treatment alone. The time interval between primary surgery for GCT and diagnosis of the malignant transformation ranged from 7 to 25 years. There were 7 cases with an interval of more than 20 years.

Similar to cases with irradiated GCT, our case raises the question of whether these tumours represent long-term malignant transformation of the original tumour, or whether they are de novo primary tumours. Some authors believe that spontaneous malignant transformation of benign GCT can occur without either radiation or surgery (3,12). The only evidence to support malignant transformation of a benign GCT includes documentation of a pre-existing benign GCT, or areas of benign GCT adjacent to sarcomatous elements. In the case

Fig. 1A & B. — Anteroposterior and lateral radiograph of the left knee in 2002, showing an osteolytic lesion with unclear osteosclerotic border involving the epiphyseal region of the medial tibial plateau.

Fig. 2. — Magnetic resonance imaging (MRI) in 2002, showing a tumour with gadolinium enhancement.

Fig. 3. — Curettage specimen in 2002, showing spindle-shaped tumour cells with a storiform pattern. Proliferation of multinucleated giant cells associated with osteoclasts was not observed. Some cytological atypia, necrosis and atypical mitosis were identified. The diagnosis at the second curettage was a benign bone tumour compatible with low-grade malignant potential but not associated with GCT (haematoxylin and eosin; original magnification, ×200).
presented here, no residual GCT cells were present at the second operation in 2003. The final tumour diagnosed in 2010 appeared to arise from the bone surrounding the bone cement or from xenogeneic bone graft transplanted 38 years earlier. It seems reasonable to presume that this case may be a de novo MFH arising from bone adjacent to the primary lesion, rather than late malignant transformation of a benign GCT.

There are several possibilities as to why MFH occurred adjacent to the primary lesion. Considering the clinical history of the patient, the first possibility is associated with use of the Kiel bone. Kiel bone was frequently used during the 1970’s. It was commercially available and consisted of deproteinised bone prepared from freshly killed calves. The bone was extracted with hydrogen peroxide, treated with fat solvents and sterilized by gamma radiation. Salama and Weissman used Kiel bone in 28 patients with benign bone tumour, pseudoarthrosis or traumatic bone defect \(^{(13)}\). They reported one infection but no malignant transformation after a follow-up period of more than 6 months. To date, there have been no reports describing sarcoma transformation associated with a Kiel bone graft.

Another possibility is the association with bone necrosis and cement. Ortiz-Cruz \textit{et al} \(^{(11)}\) reported a case with MFH arising in necrotic bone at the site of a previously curetted GCT 18 years after the initial surgery. Histologically, no residual GCT was present and the tumour appeared to arise from the area surrounding the bone graft. To our knowledge, 12 cases have been reported to date describing the presence of sarcoma at the site of total joint replacement using bone cement. Of these, the most frequent tumour type was pleomorphic MFH with abundant giant cells. The time interval between arthroplasty with cementing and malignant transformation ranged from 14 months to 15 years.

\textbf{Fig. 4A & B.} — Anteroposterior and lateral radiograph in 2010, showing osteolytic lesion surrounding primary lesion. Bone cement was present just beneath the medial subchondral bone at the tibial plateau.

\textbf{Fig. 5.} — MRI in 2010, showing an area with abnormal signal adjacent to the bone cement.

\textbf{Fig. 6.} — Curettage specimen in 2010, showing a high-grade MFH consisting of anaplastic cells with atypical nuclei juxtaposed with zones of the previous lesion. The MIB-index was approximately 20% positive, thus showing high malignancy. No evidence was found of multinucleated giant cells or GCT (haematoxylin and eosin; original magnification, ×200).
Lucas et al. presented two cases following total hip arthroplasty (6). Although the aetiology of arthroplasty-associated sarcoma is uncertain, Lucas et al. and other authors speculated that a thin mantle of necrotic bone forms at the interface between bone and cement. This is caused by the heat produced during polymerization of the methylmethacrylate bone cement. The necrotic mantle could play a role in carcinogenesis by inducing a chronic repair process and infiltration of histiocytic components that eventually leads to malignancy.

The present case appears to be unique for two reasons. First, most sarcomas that develop from a pre-existing GCT occur within 5 years of treatment of the primary tumour. Our patient experienced late development of MFH after treatment of a pre-existing GCT that was not associated with irradiation, 38 years after the initial diagnosis was made. This latency period is, to our knowledge, the longest yet reported. Second, there has been no previous report associating Kiel bone with the occurrence of a malignant tumour. If the tumour curetted 28 years after the initial GCT surgery had already developed into MFH, the late development of malignant tumour probably has some association with Kiel bone. The use of bone cement and associated bone necrosis potentially contributed to the development of a malignant tumour adjacent to the primary GCT lesion.

REFERENCES