The influence of sagittal cervical profile, gender and age on the thoracic kyphosis

Serkan Erkan, Hüseyin S. Yercan, Güvenir Okcu, R. Taşkin Özalp

From Celal Bayar University, School of Medicine, Manisa, Turkey

INTRODUCTION

The significance of the sagittal curvatures of the spinal column has been reported previously (14). The thoracic curve is mostly seen as the primary curve, while the cervical and the lumbar curves are considered as secondary curves. However, some authors consider the cervical curve to be the primary curve, because it is already formed at approximately 10 weeks of fetal life.
It has been reported (17) that the prevalence of “loss of cervical lordosis” is 42% in asymptomatic patients, a ratio comparable with the ratio in the current study (30%); however, one third of these patients’ films were taken in a position of cervical kyphosis. A recent study (13) demonstrated that in individuals around 40 years of age and with no kyphotic deformity, the mean cervical lordotic curve was the lowest in a group with chronic neck pain, and the greatest in normal controls, with acute pain having the intermediate lordosis.

To the best of our knowledge, there has been only one study examining the relation between the sagittal profile of the cervical spine and the thoracic spine, more specifically in 8, 11 and 15-year-old children (18). This is why the current study focused on a mainly adult population.

PATIENTS AND METHODS

Between 2004 and 2009, 228 subjects, free of spinal problems but undergoing treatment for lower extremity problems, were included in this study. There were 127 females and 101 males, with an average age of 38.7 years (range : 13 to 72). All subjects who were asked agreed to take part in the study. The exclusion criteria were: previous history of spinal trauma, surgery, degenerative and systemic disease, and a thoracic kyphosis of more than 50°. The 228 volunteers were divided into two groups: group 1 consisted of 68 subjects (30%) with loss of cervical lordosis, and group 2 of 160 subjects (70%) with physiological cervical lordosis (table I). For each patient medical history, physical examination, gender, age, height and weight were recorded.

The radiological assessment was carefully standardized. The subject stood in a relaxed position, holding onto a support at the level of the chest. Using the light beam of the X-ray machine, the shadow of a metal wire was projected onto the lateral aspect of the head, and this was used to define the inclination of the head. The angle to the horizontal line was adjusted to 20° and the head was orientated so that this line projected from the external opening of the ear to the eye (10). Cervical radiographs were made with the beam of the X-ray machine centred 15 cm below the ear at the standard distance of 183 cm. Lateral thoracic and whole spine radiographs were similarly taken, but at a lower level. The cervical lordosis was evaluated according to the posterior tangent technique originally described by Albers (1) and Gore et al (9): the lordosis was defined as the angle between the posterior walls of the vertebral bodies C2 and C7 (fig 1). Harrison et al (16) analyzed this technique and reported good inter- and intra-observer reliability, with a lower standard error of measurement (less than 2°) than with the Cobb method. The literature yields no definition of a normal cervical lordosis. For this reason we chose a tolerance of ± 4° as a possible measurement error, with 95% confidence intervals (6,10,23), and therefore defined physiological lordosis as < -4° (negative = lordotic), and cervical kyphosis as

<table>
<thead>
<tr>
<th>Table 1. — Demographics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Cervical sagittal curve (Mean, SD) (negative value = lordotic curvature)</td>
</tr>
<tr>
<td>Gender (F/M)</td>
</tr>
<tr>
<td>Age (Mean, SD)</td>
</tr>
<tr>
<td>Height (F/M)</td>
</tr>
<tr>
<td>Weight (F/M)</td>
</tr>
<tr>
<td>Global sagittal alignment (modified technique)</td>
</tr>
</tbody>
</table>

Acta Orthopaedica Belgica, Vol. 76 - 5 - 2010
+4° (positive = kyphotic), while the grey area in between or “loss of cervical lordosis” was defined as +4° to -4° (19). The upper (T1-T6), the lower (T6-T12), and the whole (T1-T12) thoracic kyphosis were measured by means of the Cobb method. Global sagittal alignment was analyzed by measuring the horizontal distance between the plumb line (a vertical line drawn through the center of C7 vertebra) and the posterior (modified technique: classically the anterior) superior corner of the sacrum. All the measurements were done by the same observer (SE).

Statistical analysis was performed using SPSS version 11.0 (Chicago, IL). Differences in continuous variables between group 1 and group 2 were examined with an unpaired t-test. The Pearson’s correlation coefficient test was used to evaluate the influence of cervical lordosis, gender and age on upper, lower, and whole thoracic kyphosis. Significance was defined as \(p < 0.05 \).

RESULTS

Comparability of the study groups

Group 1 and 2 were comparable with regard to their gender distribution (F/M = 57%/43% versus 54%/46% : \(p = 0.71 \)) (table I). They were also of comparable age (37.9 years, SD 12.7, range 13–70, versus 39.4 years, SD 13.6, range : 12–72) : \(p = 0.63 \). No significant height (\(p = 0.42 \)) or weight (\(p = 0.55 \)) differences were observed. As to global sagittal alignment (the mean distance between the plumb line from the center of C7 and -in the current study- the posterior superior corner of the sacrum) : 68 ± 9 mm in group 1 and 74 ± 6 mm in group 2, which was absolutely comparable (\(p = 0.12 \)). The plumb line fell anterior to the posterior superior corner of the sacrum on all radiographs.

Influence of sagittal cervical profile on thoracic kyphosis

In group 1 (loss of cervical lordosis) the upper, lower and whole thoracic kyphosis were not pronounced : respectively 8 ± 2° (range : 3-28°), 15 ± 4° (range, 6-40°), and 24 ± 6° (range : 10-46°). In group 2 (physiological cervical lordosis) the normal lordosis seemed to lead to a compensatory increase of these curves : 13 ± 4° (range : 4-35°), 21 ± 5° (range : 6-45°), and 34 ± 8° (range : 12-50°), respectively. The differences with group 1 were significant : \(p = 0.008 \), \(p = 0.012 \), and \(p = 0.007 \) (fig 2).

Influence of gender on thoracic kyphosis

In group 1 gender had no influence on upper, lower and whole thoracic kyphosis : \(p = 0.78 \), \(p = 0.86 \), and \(p = 0.81 \). In group 2 the same statement could be made : \(p = 0.72 \), \(p = 0.66 \), and \(p = 0.69 \).

Influence of age on thoracic kyphosis

In group 1, no significant correlation was found between age and upper, lower and whole thoracic kyphosis.
kyphosis: $p = 0.066$, $p = 0.082$ and $p = 0.075$. In group 2, the same was true, but if individuals older than 50 were compared with those younger than 50, there was a significant increase in the lower and whole thoracic kyphosis: $p = 0.009$ and $p = 0.007$ (fig 3).

DISCUSSION

This is the first study to investigate the influence of cervical sagittal curvature, age, and gender on the upper, lower and whole thoracic kyphosis in mainly adult asymptomatic subjects.

Several methods have been described for the evaluation of the sagittal curvature of the cervical spine (1,9,16). There is a consensus that a lordotic curvature constitutes the “physiological” or “normal” situation for the cervical spine (14), however, the exact values and the recommended methods of measurement are not clearly described. Normal limits have been published ranging from -20° to -35° for C2C7 (3,8,11,22), but these values are highly related to the method of measurement used and the positioning of the patient during the radiograph. Moreover, factors such as tilt of the pelvis, sitting or standing position, shape of the back rest when sitting, and head position can all influence the sagittal curve of the cervical spine (17,20,22). We used the roentgenographic approach described by Grob et al (10). We assumed that keeping the head position in a standardized position would limit any possible drawbacks in this respect.

We used the posterior tangent method to evaluate the sagittal cervical curvature (8,22,25). We chose a tolerance of $\pm 4^\circ$ as a possible measurement error, with 95% confidence intervals (6,10,23), and therefore defined physiological lordosis as $<-4^\circ$, and cervical kyphosis as $>+4^\circ$, while the grey area in between or “loss of cervical lordosis” was defined as $+4^\circ$ to -4°. This scale led to an average physiological cervical lordosis of $-18.2 \pm 13.2^\circ$ in 70% of the subjects (group 2) (table I), which was consistent with the findings of Gore et al (8), Harrison et al (15), and Nojiri et al (22) : respectively $-23 \pm 21^\circ$, -34° (range -16.5 to +66°) and $-16.2 \pm 12.9^\circ$. The same scale led to an average “loss of cervical lordosis” of $-2.4 \pm 1.4^\circ$, in 30% of the subjects (group 1) (table I). This last incidence was lower in most other comparable studies: 7.2% according to Borden et al (3), 19% according to Juhl et al (20), 7.4% according to Hald et al (11), and 42% according to Helliwell et al (18). The high incidence of
“loss of cervical lordosis” in the present study can be attributed to the fact that different measurement techniques (depth of curvature, categorisation in relation to the aspect) were used in the other studies.

Influence of cervical sagittal curve on thoracic kyphosis: we observed that patients with loss of cervical lordosis (group 1) also had a less pronounced upper, lower, and whole thoracic kyphosis than patients with a physiological cervical lordosis. This is consistent with the findings of Hardacker et al. (12). Cervical and thoracic sagittal curves seem to compensate each other. In contrast, Hellsing et al. (18) found no such correlation, but all their subjects were children.

Gender: Hardacker et al. (12) observed that statistically men had a more pronounced cervical lordosis than women. Also Helliwel et al. (17) reported that women were more likely to have loss of cervical lordosis than men. But Gore et al. (8) found no significant effect of gender on cervical spinal alignment. However, these studies did not group patients as having either “loss of cervical lordosis” or “physiological lordosis”. In the current study, we observed no effect of gender on “loss of cervical lordosis” or “physiological lordosis”, as women were equally represented in group 1 and 2. Moreover, gender had no effect on the upper, lower, and whole thoracic kyphosis, neither in group 1 nor in group 2. These findings concur with those of Gelb et al. (7) who found no difference between females and males as to thoracic kyphosis.

Age: Gore et al. (8) observed a significant increase in the cervical lordosis between age 20-25 and age 40-45, in women as well as in men. Hardacker et al. (12) also noted this correlation. In contrast with these findings, we did not observe any such correlation. Moreover, in the current study we found no significant correlation between age and the degree of the upper, lower, and whole thoracic kyphosis, neither in group 1 nor in group 2. However, in group 2, subjects older than 50 years, had a significant increase in the lower and the whole thoracic kyphosis. This finding was not supported by Hardacker et al. (12) and Gelb et al. (7) who found no correlation between increasing age and thoracic kyphosis.

A limitation of this study is the fact that it did not check intra- and inter-observer reliability, as all measurements were made only once by the same observer (SE). In conclusion, this study yields standards for reference for the normal curvatures of the sagittal plane of the spine. The literature is quite controversial on this matter.
REFERENCES

1. Albers D. [Study on the function of the cervical vertebral column in dorsal and ventral flexion.] (in German)
Fortschr Geb Röntgenstr 1954 ; 81 : 606-615.
Radiology 1960 ; 74 : 806-809.
Spine 1983 ; 8 : 151-165.
5. Clausen JD, Goel VK, Traynelis VC, Scrifert J. Uncinate processes and Luschka joints influence the biomechanics of the cervical spine: quantification using a finite element model of the C5-C6 segment.
7. Gelb DE, Lenke LG, Bridwell KH, Blanke K, McEnery KW. An analysis of sagittal spinal alignment in 100 asymptomatic middle and older aged volunteers.
8. Gore DR, Sepic SB, Gardner GM. Roentgenographic findings of the cervical spine in asymptomatic people.
Rofo 1995 ; 163 : 4-8.
17. Helliwell PS, Evans PF, Wright V. The straight cervical spine: does it indicate muscle spasm?
19. Hopkins WG. Measures of reliability in sports medicine and science.
22. Nojiri K, Matsumoto M, Chiba K et al. Relationship between alignment of upper and lower cervical spine in asymptomatic individuals.
J Neurosurg 2003 ; 99 (1 Suppl) : 80-83.
25. Wiegand R, Kettner NW, Brahee D, Marquina N. Cervical spine geometry correlated to cervical degenerative disease in a symptomatic group.