Non-traumatic avulsion of the greater trochanter: A case report

Mohamed El Hachmi, Damien Desmette, Jean-Paul Forthomme

From the Centre Hospitalier Régional de Mons, Mons, Belgium

INTRODUCTION

Avulsion fracture of the greater trochanter is a rarity in children. When reported in literature, it is often caused by a traumatic event (7). We present a case of non-traumatic origin which was treated surgically. Among the possible aetiologic factors, infection should be excluded and risk factors for slipped capital femoral epiphysis should be kept in mind. A regular follow-up is indicated to detect early signs of avascular necrosis of the femoral head.

CASE REPORT

A 13-year-old boy presented with progressive right hip pain over the past few months, without any trauma history. The pain was essentially mechanical. On examination, palpation of the greater trochanter was painful. The range of motion of the hip was limited by pain.

A plain radiograph showed partial separation of the greater trochanter (fig 1). A radioisotope bone scan showed an asymmetric hot spot in the area of the right greater trochanter (fig 2). CT-scan excluded associated hip lesions and confirmed the diagnosis of trochanteric avulsion fracture, which was a type I lesion with minimal displacement.

Despite a conservative treatment, well conducted during four weeks using a hip abduction brace, the pain did not resolve. Surgical treatment was therefore undertaken. The greater trochanter was approached by a lateral incision with fluoroscopy imaging, on the patient in prone position. Based on the CT-scan images, no reduction maneuver was needed. This enabled a percutaneous technique to

No benefits or funds were received in support of this study

be used; the apophysis was re-fixed with one AO 7.3 mm partially threaded lag screw, intended to achieve fusion of the physis. The reposition was assessed by fluoroscopy.

After surgery, the patient was mobilised with partial weight bearing. Pain relief was immediately achieved. Full weight bearing was allowed after six weeks, after radiographic check (fig 3). The patient made an uneventful recovery, and radiographs 18 months after surgery showed fusion of the trochanteric physis (fig 4).

DISCUSSION

In the pelvis, the most common site of avulsion injuries is the ischial tuberosity (6,13).

The greater trochanter is the attachment site for the hip rotators, including the gluteus medius and minimus, obturator internus, gemelli and piriformis muscles. Avulsion of the greater trochanter generally occurs in association with a traumatic event (8).

In children, traumatic avulsion fractures of the greater trochanter are very rare; they have been classified according to the mechanism causing the fracture (3,5). Chotel et al described three types of lesions. Type 1 lesions are avulsion fractures of the greater trochanter secondary to acute contraction of the gluteus muscles; this type is rarely associated with femoral head necrosis. Type 2 avulsion fractures are associated with fracture of the femoral neck with a subsequent risk of femoral head necrosis. Type 3 combines hip dislocation with apophyseal avulsion; according to the literature, there is an inevitable progression to femoral head necrosis (3).

To our knowledge, there is only one case reported in literature of a greater trochanter avulsion fracture of non-traumatic origin. Bloome reported one such case in a patient who presented risk factors for slipped capital femoral epiphysis (1).

Several papers recently published raised the possibility of a relation between fracture avulsion of the greater trochanter and slipped capital femoral
Excluding a traumatic event, a slipped capital femoral epiphysis and an infection, we could not find a specific aetiology causing this injury in our patient. Whatever the aetiology, the prognosis is reserved because of the risk of avascular necrosis of the femoral head due to the proximity of the blood supply to both anatomic sites (11,12), well described by Trueta (10). In their attempt to classify the lesions, Chotel et al reported two cases which led to femoral head necrosis (2). Other authors reported cases of osteonecrosis after trochanteric avulsion in children, confirming the guarded prognosis of these lesions (5,7). None of these reports could relate the necrosis to the trauma or to the surgical manipulation.

There is no published data about conservative treatment for avulsion of the greater trochanter. The surgical treatment, preferred by all authors, consists in reduction of the avulsion (12). Considering the risk of iatrogenic avascular necrosis, we preferred to treat this lesion with careful minimal open reduction to avoid further devascularisation of the immature proximal femur.

epiphysis (1,2,5,7), in obese male teenagers. We cannot therefore exclude an inherent weakness in the growth plate of the greater trochanter, although our patient presented no risk factors for slipped capital femoral epiphysis.

It is important to differentiate a real avulsion fracture, which is very rare, from a widening of the physis of the greater trochanter which may be a radiological sign of osteomyelitis in children (9).
REFERENCES