Bilateral combined fractures of the scaphoid and distal radius in a 13-year-old male

Lars Petter Bjørnsen

From Lofoten Hospital, Gravdal, Norway

The scaphoid is the most common of the carpal bones to fracture; upper limb fractures are associated in 5-10% of cases, and around 2% of the concomitant fractures are of the distal radius. One case of bilateral carpal scaphoid fractures associated with bilateral distal radius fractures is presented. Radiographs showed displaced Salter-Harris Type II radius fracture and nondisplaced transverse midscaphoid fracture on both sides. Conservative treatment with scaphoid casts on both arms was inconvenient for the patient, but gave complete union of the fractures and functionally, painless full range of motion.

Keywords: radius; scaphoid; combined fracture; wrist injury.

INTRODUCTION

The scaphoid is the most common of the carpal bones to fracture (3,6). Upper limb fractures are associated in 5-10% of cases (5,9,13,22). Around 2% of the described concomitant fractures are of the distal radius (20,22) and this combination of fractures has been well described in adults (18). Scaphoid fractures, divided into fracture of distal pole, mid-waist, and proximal pole, have a peak incidence between the ages 15 and 30 years and are rare prior to the age of 15. Ossification of the scaphoid begins at 5 to 6 years and is not complete until 13 to 15 years of age. Because the scaphoid is largely cartilaginous in children, it is rarely injured (1). However, although carpal fractures in children are rare, the scaphoid is the most frequently fractured carpal bone in children (12,14,15,21) accounting for 3 percent of the hand and wrist fractures in people younger than fifteen years.

Only a few cases with combined fracture of the distal radius and scaphoid have been reported in the literature (1,4,8,19,21). To the best of our knowledge, this is the first time a case of bilateral concomitant distal radius and carpal scaphoid fractures in a skeletally immature patient has been reported.

CASE REPORT

Following a bicycle accident with a fall on outstretched hands, a 13-year-old boy was evaluated at...
our hospital. He complained of local pain and deformity of the distal end of the left forearm and pain in the right wrist. Clinical examination revealed swelling over the dorsal aspect of the left wrist and discoloration. The right wrist was less swollen, but there was a blue discoloration on the dorsal side. No obvious deformity was seen on the right forearm. Both wrists were tender to palpation and had decreased range of motion. The neurovascular status was normal. No other injuries were found. Anteroposterior and lateral radiographs of the wrists showed displaced Salter-Harris Type II fractures (11,16) on both sides (fig 1). The fracture of the left wrist was more dorsally displaced than on the right side. A nondisplaced transverse midscaphoid fracture was seen in both hands (fig 2). The fractures were in good position and were immobilized with a cast below the elbow including the thumb (scaphoid cast) on both arms for 6 weeks. The conservative treatment was inconvenient for the patient, but gave complete union of the fracture and functionally, painless full range of motion was obtained. The patient and his family were informed that data from the case would be submitted for publication, and gave their consent.

DISCUSSION

Fractures of the carpal scaphoid associated with distal radius fracture are remarkably rare in skeletally immature subjects. Only a few cases have been reported in the literature (1,7,8,21), but now this type of combined fracture seems to be more and more frequently recognized (17). Waist scaphoid fractures, like in this case, are more common in adults than in children; however, scaphoid waist fracture are increasing in frequency as participation in contact athletics is occurring at a younger age (10). Even though fracture of the carpal scaphoid associated with fracture of the distal radius is a highly
unusual combination of injuries in skeletally immature patients, it is important to have a high index of suspicion for their association. A scaphoid fracture may have an associated injury in 12 percent of cases, involving either the radius, neighbouring carpal bones, a carpal instability pattern, or dislocation (11). The mechanism of injury is similar for both scaphoid and distal radial fracture and this should be kept in mind when the very common distal radius fracture is diagnosed. The diagnosis is made by a correlation of the clinical and radiographic findings. Examining the wrist in ulnar deviation exposes more of the scaphoid to direct palpation in the anatomic snuffbox. Eliciting pain in this area when the patient resists supination or pronation of the hand, or pain with axial pressure directed along the thumb’s metacarpal, is also suggestive of injury (11).

Scaphoid fractures are usually not as obvious as in this case and they are often not visible on initial radiographs. Standard and scaphoid views should be carefully examined for any cortical disruption. Standard anteroposterior and lateral views are usually adequate, but if a patient presents with pain at the radial side of the wrist, more specifically in the “anatomic snuffbox”, a scaphoid view of the wrist should be added to the wrist series (2). This is a PA radiograph with the wrist extended 30° and deviated ulnarly 20°. This view helps to stretch out the scaphoid and is also used for assessing the degree of scaphoid fracture angulations.

The physician should be aware of structures in the scaphoid bone, like partial division, incomplete clefs, cysts, and trabecular pattern that might simulate a fracture (10). Incomplete ossification might further complicate radiological diagnosis. If no fracture is seen on initial x-ray examination but the patient has pain at the scaphoid, treatment should be as for nondisplaced scaphoid fracture with immobilization.

Nondisplaced fractures and those that are only clinically suspected can be treated in a short-arm thumb spica splint. Splinting in dorsiflexion and radial deviation helps to compress the fracture fragments. Radiographs out of plaster should be repeated in 7 to 10 days to ensure alignment and then monthly to union. If radiographs show no fracture and the pain has resolved, the cast can be left off. Persistent pain with normal radiographs requires continued immobilization and advanced imaging studies, such as bone scan, CT-scan, or MRI-scan (10).

A scaphoid fracture is considered unstable if it is oblique; if there is as little as 1 mm of displacement; if there is rotation or comminution; or if a carpal instability pattern is present. Patients with unstable fractures should be placed in a long-arm thumb spica splint and should be seen promptly by an orthopaedic surgeon for definitive treatment. All displaced fractures should be treated with open

Fig. 2. — AP radiographs of the carpal bones at the time of injury. A transverse midscaphoid fracture (arrowhead) was diagnosed on the right (A) and left (B) side. Both fractures healed uneventfully. No signs of scaphoid avascular necrosis were appreciated after 6 weeks. The patient regained full and painless motion.
reduction and internal fixation or with arthroscopic surgery.

Even with optimal cast treatment, some of these fractures will be complicated by delayed union, nonunion, or avascular necrosis. A scaphoid fracture can develop avascular necrosis of the proximal fracture segment that can lead to disabling arthritis (11). In general, the more proximal, oblique, or displaced the fracture, the greater the risk of developing avascular necrosis.

Distal radial fractures are common and the peak incidence is in the preadolescent growth spurt (10). Plain AP and lateral films are usually diagnostic of the fracture type and deformity. The Salter-Harris system (16) is the basis of classification of the distal radial physeal fractures, and most are, as in this case, Salter-Harris type II fractures. If the acute fracture is unrecognized, a late-appearing periosteal reaction may indicate the fracture. CT scans may be necessary to define the fracture pattern and degree of intra-articular displacement. Treatment options include no reduction, closed reduction and cast immobilization, closed reduction and pin fixation, and open reduction (10). Here the nondisplaced radius fractures were immobilized until appropriate healing and pain resolution had been achieved.

As a summary, the patient in this case was immobilized with a cast on both arms for six weeks, allowing uncomplicated healing of the fractures. Both scaphoid bones went on to complete union. The outcome was excellent, with full and painless range of motion of the wrist. We suggest that initial splinting may be done by the emergency physician, but, since complications can occur even with optimal treatment, close follow-up by an orthopaedic surgeon is recommended.

Acknowledgements

I would like to thank Benno Röper at the Department of Surgery and Jon Heger at the Department of Radiology, both at Lofoten Hospital, Norway, for support and guidance.

REFERENCES

