Lumbosacral transitional vertebrae (LSTV) are common congenital anomalies of the human spine. In LSTV, either the fifth lumbar vertebra may show assimilation to the sacrum (sacralisation), or the first sacral vertebra may show transition to a lumbar configuration (lumbarisation). Although the condition has an incidence of over 12% in the general population, knowledge about the exact clinical implications is still lacking. The association between LSTV and low back pain has been debated since it was first described by Bertolotti almost a century ago. Furthermore, several conflicting studies have been published regarding the association of LSTV with other spinal pathology. There seems to be a relation with early disc degeneration above the LSTV in young patients. However, these differences fade with age as they are masked by other degenerative changes of the spine. From a practical viewpoint, failure to recognise and to number LSTV during spinal surgery may have serious consequences.

Keywords: lumbosacral spine; transitional anomalies.

INTRODUCTION

Lumbosacral transitional vertebrae (LSTV) are common congenital anomalies of the lumbosacral spine (64). Most frequently, the fifth lumbar vertebra shows signs of assimilation to the sacrum, a condition often referred to as sacralisation. In case of lumbarisation, the first sacral vertebra shows signs of transition to a lumbar configuration (30). Complete transition results in numerical abnormalities of the lumbar and sacral segments (30): the lumbosacral junction is renamed according to the transition type, resulting in L4-S1 (sacralisation) and L6-S1 (lumbarisation) (see infra: “numbering of lumbosacral transitional vertebrae”). In most cases, however, transition is incomplete or unilateral (fig 1) (37). In 1984, Castellvi et al (9) proposed a classification (table I) for the degree of transition based on form and orientation of the transverse processes: they show varying degrees of articulation up to complete fusion to the sacral ala (fig 2).

In 1917, Bertolotti (4) was the first to describe an association between LSTV and low back pain (LBP). However, this has remained a matter of debate in the literature for almost a century now (3,9,15,16,20,21,23,28,37,39,51,52,56-59,61-63). In addition, patients with LSTV are reported to have increased risk for advanced disc degeneration or disc herniation (fig 3a and b) above the LSTV (2,28,62).
Other studies have reported association with cervical ribs, altered nerve root functioning and facet joint arthrosis. From a practical viewpoint, failure to recognize LSTV on imaging studies during the planning of spinal procedures may result in wrong level surgery. In the current study, a review of the literature is presented and clinical relevance of LSTV is discussed.

NUMBERING OF LUMBOSacRAL TRANSITIONAL VERTEBRAE

The most accurate method of determining the lumbosacral transition is using AP and lateral lumbosacral radiographs combined with a 30° angled cranially directed AP plain radiograph. The lumbar levels can now easily be defined on the radiograph by counting down from the T12 vertebra, defined as the vertebra from which the lowest rib originates. However, when MRI scanning is performed in absence of plain radiographs, particular attention for the existence of LSTV is necessary, and additional knowledge and techniques are required. Many techniques have been suggested to define the lumbar vertebral levels on MRI images, including counting down from C2 or up from S5, and the relation to anatomical landmarks like the aortic bifurcation, the right renal artery and the iliolumbar ligament. A consensus, however, is still lacking. O’Driscoll et al correlated a classification of sacral disc morphology on MRI with the classification of LSTV.

Table I. — Classification of LSTV according to Castellvi et al (9)

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>Dysplastic transverse process</td>
<td>Unilateral (a) or bilateral (b) large triangular transverse process, at least 19 mm wide</td>
</tr>
<tr>
<td>Type II</td>
<td>Incomplete lumbarisation / sacralisation</td>
<td>Enlarged transverse process with unilateral (a) or bilateral (b) pseudarthrosis with the adjacent sacral ala</td>
</tr>
<tr>
<td>Type III</td>
<td>Complete lumbarisation / sacralisation</td>
<td>Enlarged transverse process, with unilateral (a) or bilateral (b) complete fusion with the adjacent sacral ala</td>
</tr>
<tr>
<td>Type IV</td>
<td>Mixed</td>
<td>Type IIa on one side and type IIIa on the other</td>
</tr>
</tbody>
</table>

36,43,46,47,61,64). Other studies have reported association with cervical ribs, altered nerve root functioning and facet joint arthrosis. From a practical viewpoint, failure to recognize LSTV on imaging studies during the planning of spinal procedures may result in wrong level surgery. In the current study, a review of the literature is presented and clinical relevance of LSTV is discussed.

Fig. 1. — Plain A-P radiograph of a patient without low back pain and with a unilateral (left-sided) LSTV, type Ia according to Castellvi.

Fig. 2. — Schematic presentation of the classification of LSTV according to Castellvi. Type IV is not reproduced: it is a mixture of type II and III.
according to Castellvi. The sagittal scans of the sacrum were separated into four types (1-4) according to the appearance of the disc between the uppermost sacral segment and the remainder of the sacrum. This demonstrated a good correlation between the presence of a fused LSTV (Castellvi type III or IV) and a type 4. However, patients with Castellvi types Ia or IIb LSTV were not identified with this method (30, 44). Another MRI method for defining the lumbar levels is using C2 as a landmark, which is based on the assumption that there are always 7 cervical and 12 thoracic vertebrae (12, 25, 44, 48). Hahn et al (25) made a cervicothoracic scout MRI in every patient and counted caudally from C2. They identified 24 cases of LSTV in 200 patients (12%). Moreover, they stated that consistently accurate verification of the actual level of disc disease outweighs the additional time and efforts that are required. Peh et al (48) found an 11.6% interobserver discordance in assessment of L5 when only using a lumbosacral scout MRI, while the lumbar segments could be identified consistently when using an additional cervicothoracic scout, so that one could count down from C2. Chithriki et al (11) investigated the relationship of the aortic bifurcation with the lumbar spine. In the normal spine, the aorta bifurcated at the L4 level in 67% of the cases. In case of sacralisation the bifurcation was found at the level of L3 in 59%. In lumbarisation, the bifurcation was found at the level of L4 in 40% and at the level of the L4/L5 disc space in 33%. Therefore, the localisation of the aortic bifurcation as a landmark cannot be used in patients with LSTV to accurately determine the lumbar vertebral levels. Recently, Hughes et al (29) showed that the iliolumbar ligament could be used as a landmark on T1-weighted MRI scans. In the absence of LSTV, the ligament exclusively arises from the transverse process of L5. In their study, they showed that when the ligament arose at the

Fig. 3. — (a) Plain A-P radiograph of a patient with low back pain without radiculopathy and a unilateral (left-sided) LSTV, type IIa according to Castellvi; (b) T1-weighted sagittal MRI scan of the same patient, showing a disc herniation, typically above the LSTV.
vertebra above a LSTV, the S1 segment was transitional (lumbarisation). In case of L5 transition (sacralisation), the ligament was absent or smaller and of course no ligament was seen at the level above. They advised the use of the iliolumbar ligament as an accurate method to assign lumbar levels in case of LSTV (29). Milicic et al (42) obtained sagittal MR images of the sacrum and coccygeal bone in addition to sagittal MRI scans of the lumbosacral spine to define the lumbosacral transition in children. According to the authors, the sacrum can be clearly distinguished from the coccygeal bone on the T2-weighted sequence. By counting upward from S5, the S1 vertebra could be accurately identified.

Incorrect numbering during the planning of spinal surgery may have serious consequences. Malanga and Cook (38) reported wrong level emergency decompression, in a patient with a cauda equina syndrome, due to neglecting complete lumbarisation of S1. Incorrect numbering can theoretically lead to problems with the administration of epidural or intradural anaesthetics in patients with LSTV. Kim et al (34) showed that an LSTV does affect the position of the intercrestal line (the line connecting the highest points of the iliac crests, also called ‘Tuffier’s line’), and on the location of the conus medullaris. The intercrestal line normally corresponds with the level L4/L5 and is therefore used as a landmark for needle insertion (34). Theoretically, variations in the exact level of the intercrestal line in patients with LSTV might have serious consequences. However, the margin of safety between the intercrestal line and the conus medullaris still allows the use of this line as an anatomical landmark for the administration of spinal anaesthetics in patients with LSTV (34).

AETIOLOGY

Genetic factors are being held responsible for the segmental development of the lumbosacral spine (62). During embryogenesis, the axial skeleton is derived from the paraxial mesenchyma that surrounds the neural tube. The mesenchyma undergoes craniocaudal segmentation, resulting in clusters of cells, the so-called somites (22). The somites are segmentally organised in pairs on both sides of the neural tube and are specific for the axial level at which they are positioned (8). This segmental identity of the somites is determined by different Hox-genes in the presomitic mesoderm (8,66). The specific combination of Hox-genes that is expressed at a particular level seems to determine the axial identity of the resulting structures. To support this hypothesis, Carapuco et al (8) showed that vertebral sacralisation can be induced in transgenic mice by Hoxa11 expression. Wellik et al (66) showed that in the absence of Hox11 function, sacral vertebrae are not formed and instead these vertebrae assume a lumbar identity. In addition, they showed that in the absence of Hox10 function, no lumbar vertebrae are formed. Thus, these studies show that the normal patterning of lumbar and sacral vertebrae as well as the changes in the axial pattern, such as LSTV, result from mutations in the Hox-10 and Hox-11 paralogous genes (8,66). In addition, Erken et al (22) found a significant association between sacralisation and cervical rib. The mechanisms responsible for the development of the lumbosacral spine may therefore influence the development of the cervical spine and vice versa.

PREVALENCE

The prevalence of LSTV reported in the literature ranges from 4 to over 35% (table II). This wide range may be explained by differences in diagnostic criteria, imaging techniques, and confounding factors between the investigated population samples. Hsieh et al (28) found a prevalence of 4% in a population mainly consisting of Chinese patients by using anteroposterior (AP) plain radiographs for diagnosis. However, they excluded Castellvi type I, because this lesion would lack effects on spinal biomechanics. Erken et al (22) also used AP plain radiographs for diagnosis, but did not exclude subtypes of LSTV. They found a prevalence of 35.9% in a predominantly Turkish population sample. No further studies have been published regarding racial differences. In a systematic review of comparable observational studies from 1986 to date we found a mean prevalence of 12.3% (table II). About 50% of these studies further divided LSTV in
lumbarisation and sacralisation with a mean prevalence of 5.5% and 7.5%, respectively (table II).

ASSOCIATED SPINAL PATHOLOGY

Patients with LSTV are often suggested to be prone to various secondary pathologic spinal conditions including intervertebral disc herniation and/or degeneration, facet joint arthritis and spinal canal or foraminal stenosis. For most conditions, however, convincing evidence is lacking in the scientific literature. Elster (20) found no difference in the overall incidence of structural pathology of the spine (eg, spinal stenosis and disc protrusion) in patients with LSTV after studying 2,000 adult patients. However, they noticed a significant difference in the distribution of these spinal lesions: bulging disc or disc herniation, as it occurred in patients with LSTV, was nine times more common at the level immediately above the transitional vertebra compared to patients without LSTV. The increased risk for disc herniation or degeneration at the disc level above the LSTV was confirmed by other studies (28,36,46,47). Luoma et al (37) showed that disc degeneration above the LSTV was more frequent in young patients; but during aging these degenerative disc changes became less obvious and were masked by regular degenerative changes. Reversely with Elster (20), Otani et al (46) found a significantly higher incidence of LSTV in patients that were treated for disc herniation when compared to an asymptomatic control group. In addition, they showed that the mean age was significantly lower in patients with disc herniation and LSTV, compared to patients with disc herniation without signs of LSTV.

Table II. — Survey of prevalence of LSTV in the observational studies published since 1986

<table>
<thead>
<tr>
<th>First author</th>
<th>Year</th>
<th>Number patients</th>
<th>Transitional vertebrae</th>
<th>Lumbarisation</th>
<th>Sacralisation</th>
<th>LBP+ or DD+</th>
<th>LBP- or DD-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinlan (52)</td>
<td>2006</td>
<td>769</td>
<td>35 (4.6%)</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Hughes (29)</td>
<td>2006</td>
<td>500</td>
<td>67 (13.4%)</td>
<td>21 (4.2%)</td>
<td>46 (9.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delport (17)</td>
<td>2006</td>
<td>300</td>
<td>90 (30.0%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peterson (51)</td>
<td>2005</td>
<td>353</td>
<td>43 (12.2%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taskaynatan (60)</td>
<td>2005</td>
<td>881</td>
<td>41 (4.7%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luoma (37)</td>
<td>2004</td>
<td>163</td>
<td>49 (30%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steinberg (59)</td>
<td>2003</td>
<td>464</td>
<td>85 (18.3%)</td>
<td>20 (4.3%)</td>
<td>65 (14.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim (35)</td>
<td>2003</td>
<td>690</td>
<td>41 (5.9%)</td>
<td>29 (4.2%)</td>
<td>12 (1.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chithriki (11)</td>
<td>2002</td>
<td>441</td>
<td>37 (8.4%)</td>
<td>15 (3.4%)</td>
<td>22 (5.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otani (46)</td>
<td>2002</td>
<td>1009</td>
<td>119 (11.8%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erken (22)</td>
<td>2002</td>
<td>729</td>
<td>262 (35.9%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santiago (36)</td>
<td>2001</td>
<td>138</td>
<td>26 (18.4%)</td>
<td>10 (7.2%)</td>
<td>16 (11.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hsieh (28)</td>
<td>2000</td>
<td>1668</td>
<td>67 (4.0%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dai (16)</td>
<td>1999</td>
<td>460</td>
<td>126 (27.4%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peh (48)</td>
<td>1999</td>
<td>129</td>
<td>17 (13.2%)</td>
<td>9 (7.0%)</td>
<td>8 (6.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadeddu (7)</td>
<td>1997</td>
<td>299</td>
<td>16 (5.4%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergauwen (64)</td>
<td>1997</td>
<td>350</td>
<td>53 (15.0%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O’driscoll (44)</td>
<td>1996</td>
<td>100</td>
<td>15 (15.0%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hald (26)</td>
<td>1995</td>
<td>5781</td>
<td>792 (13.7%)</td>
<td>341 (5.9%)</td>
<td>451 (7.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hahn (25)</td>
<td>1992</td>
<td>200</td>
<td>24 (12%)</td>
<td>9 (4.5%)</td>
<td>15 (7.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elster (20)</td>
<td>1989</td>
<td>2000</td>
<td>140 (7%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leboeuf (36)</td>
<td>1989</td>
<td>330</td>
<td>61 (11.5%)</td>
<td>32 (6.0%)</td>
<td>29 (5.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>17954</td>
<td>2206 (12.3%)</td>
<td>486 (5.5%)</td>
<td>664 (7.5%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LBP+ or DD+ means that there was a positive correlation with Low Back Pain or Disc Degeneration; LBP- or DD- refers to the opposite.
Increased disc degeneration of the disc above a LSTV is attributed to its relative hypermobility (24,64). This may be analogous to the advanced degeneration adjacent to a block vertebra or an interbody fusion mass (37,64). Taskaynatan et al (60) suggested an inability to disperse load equally and an increase in local stresses to result in lumbar instability. Conversely, LSTV is reported to prevent the development of degenerative disc disease of the disc below the LSTV (37,64). The articulation or fusion between the transverse process of the LSTV and the sacrum has been assumed to restrict rotational and bending movements and thereby protect the disc below (2,37,60,64).

Other spinal disorders secondary to LSTV have only been studied scarcely. Vergauwen et al (64), in a prospective study of patients with LBP and sciatica, found facet joint arthrosis and foraminal stenosis to occur significantly more often in patients with LSTV. However, for the occurrence of spinal canal stenosis in patients with LSTV, no statistically significant differences were found compared to patients without LSTV. This observation was confirmed by Oguz et al (45), and, in addition, they found no relation between the spinal canal diameter at adjacent levels and LSTV.

The relation between LSTV and degenerative spondylolisthesis has been studied by Cinotti et al (13). In this study, no difference in prevalence of LSTV was found in 27 patients with degenerative spondylolisthesis compared to 27 healthy control patients.

LOW BACK PAIN AND RADICULOPATHY

The association between low back pain (LBP) and LSTV has been disputed since it was first described by Bertolotti in 1917 (4). Of the 22 reviewed observational studies (table II), 4 studies found a positive and 5 studies a negative correlation between LBP and LSTV. Therefore the clinical challenge in patients with LSTV presenting with LBP is to determine whether an anatomical substrate related to LSTV is the underlying cause of the pain. Hypertrophic transverse processes (Castellvi type I) are generally considered to have no clinical significance and do not need further attention in clinical practice (9,28,61). In patients with more severe types of LSTV, however, certain structures should receive particular attention during clinical assessment. Firstly, the pain may have a discogenic origin, generated in the disc above the transitional vertebra (Castellvi types II, III, IV) (52). In addition, the bulging or herniated disc may cause nerve root compression resulting in LBP and sciatica (46). However, nerve roots may also be compressed between the transverse segment of the LSTV and the sacral ala (Castellvi type II) (27). Secondly, the pain may be generated in the articulation between the enlarged transverse process and the sacral ala or ilium (Castellvi type II) (32). Thirdly, contralateral LBP in patients with unilateral LSTV (Castellvi type IIa) may reflect facetogenic pain (5).

In patients with radiculopathy, the altered function of lumbar nerve roots accompanying LSTV should be taken into account during clinical investigation (10,58). Chang et al (10) revealed altered distribution of muscle weakness after compression of the S1 nerve root by herniated discs in patients with a lumbarised S1 compared to normal subjects. The S1 nerve root performed the function of the L5 nerve root. These findings are in line with earlier findings of McCulloch et al (41) who showed the L5 nerve always to origin in the ‘last mobile’ level of the lumbosacral segment.

Magnetic resonance imaging (MRI) is indicated in cases with LBP and radiculopathy (27,44,61). Single Photon Emission Computed Tomography (SPECT) is helpful in differentiating a painful articulation between the enlarged transverse process and the sacral ala or ilium (Castellvi type II) from symptomatic degenerative changes in the lumbar spine and pelvis (14,15,49,50). Indeed, focal, markedly increased uptake at the lumbosacral articulation has been shown to correspond well with the location of the pain (14,15,50). In patients with unilateral LSTV (Castellvi type IIa) and contralateral LBP, SPECT has proved to be less useful to evaluate contralateral facetogenic pain (50), while Computed Tomography (CT) seems to be most sensitive. Local anaesthetic infiltration of the anomalous articulation or facet joint can be used as a diagnostic tool in patients with (unilateral) LSTV.
However, this should be reserved for patients who are planned for resection or fusion therapy, to define the painful origin in LSTV (5,40,50).

TREATMENT

While there is little consensus on the clinical significance of LSTV, even less is known about useful treatment strategies. Unfortunately, only scarce reports with small case series are available in the literature, describing specific treatment options in symptomatic LSTV (1,5,6,31,33,40,54,65). Marks and Thulborn (40) reported about 10 patients with LBP, treated with injection of a local anaesthetic and hydrocortisone in the articulation between the LSTV and the sacrum. Eight of these patients experienced acute relief of symptoms after the injection, but the pain relapsed in 5 of them within 12 weeks. Only one patient remained free of pain for a period of two years. Nevertheless, the authors concluded that in selected cases local infiltration can be therapeutic, but that it offers greater opportunities when used as a diagnostic tool. Santavirta et al (55) surgically treated 16 patients with chronic persistent LBP and radiographically diagnosed LSTV either by posterolateral fusion (8 patients) or resection of the transitional articulation (8 patients); the results were similar, but the groups were rather small. Brault et al (5) reported the case of a 17-year-old patient with unilateral LSTV and contralateral facetogenic pain. The diagnosis was preoperatively confirmed by fluoroscopic guided injection into the facet joint. As treatment, resection of the right transverse process was performed. At 1-year follow-up the patient was free of pain. Senegas (57), finally, described encouraging results in the treatment of disc herniation at the level above LSTV using a dynamic stabilising interspinous implant.

CONCLUSION

LSTV is a benign anatomical variation of the lumbosacral spine that is very often encountered by the spinal surgeon. However, the clinical significance of the condition is still unknown and its relation with low back pain is controversial. In patients who present with LBP and a LSTV revealed by plain radiographs, the physician should be aware of secondary spinal disorders like disc degeneration and disc herniation above the LSTV, and/or facet joint arthrosis. In selected cases therefore, additional imaging methods like CT, MRI and SPECT may be considered. Furthermore, caution in numbering of lumbosacral vertebrae in symptomatic LSTV is of utmost importance in spinal surgery, especially if surgery is performed in the absence of regular plain radiographs. There is no evidence that specific surgery is indicated in patients with symptomatic LSTV.

REFERENCES

Acta Orthopædica Belgica, Vol. 73 - 6 - 2007

