Early results with the thrust plate prosthesis in young patients with osteoarthritis of the hip

Sanjeev Sharma, Gopalkrishna Verma, Kingsley Paul Draviraj, Manjit Bhamra

From Rotherham General Hospitals (NHS) Trust, Rotherham, U.K.

The purpose of this study was to evaluate the results of the Thrust Plate Prosthesis as a treatment option for osteoarthritis of the hip in young patients. Of the fifty patients (63 hips) reviewed, 31 (62%) were males and 19 (38%) females. Pre-operative diagnosis included primary osteoarthritis (23), developmental dysplasia (8), avascular necrosis (7), Perthes (4), post-traumatic arthritis (3), rheumatoid arthritis (2), ankylosing spondylitis (1), psoriatic arthropathy (1) and slipped upper femoral epiphysis (1). All components were implanted uncemented with metal-on-metal articulation. The average follow-up was 4.04 years (range 12 months-8.5 years). The mean age of the patients was 42.3 years (range 21-57 years). The mean pre-operative Harris Hip Score was 41.9 (range 12-89) and at final follow-up 89.91 (range 50-100). In 25 hips with ≥ 5yr follow-up, the average HHS at final follow-up was 84.5 (range 50-100). Complications included dislocation (2), transient sciatic nerve palsy (1), discomfort from lateral strap (2), implantation of wrong femoral head (1), revision (3 = 4.76%) and implant loosening (4) (6.35%).

The thrust plate prosthesis is a useful alternative in young patients with hip arthritis and the results are comparable with other uncemented hip replacements. The added advantage is preservation of the proximal femoral bone stock, which can prove useful in future revisions.

INTRODUCTION

Wolff’s law states that the internal architecture of bone is determined by the direction and magnitude of external forces applied to it. The presence of a rigid prosthetic stem exerts a stress shielding effect on the proximal femur. Experimental stress analysis of the proximal femur both with and without a cemented intra-medullary stem has shown stress reduction of up to 60% in the surrounding bone of the proximal part of the implanted stem (10). This leads to significant loss of bone stock in the proximal femur. In an endeavour to retain the physiological stress pattern and bone stock as far as possible, the thrust plate prosthesis (TPP) was developed by Jacob and Huggler (10).

The principle of the thrust plate prosthesis is to transfer the resulting forces from the hip joint via a thrust plate directly to the femoral neck and above all to the cortical bone of the calcar (12). This force transfer is as close to physiological as possible,

according to the biomechanical experiments of Jacob and Huggler (10). The plate has a central orifice to accept the mandrel, which carries the prosthetic femoral head. The rigid mandrel is anchored by a single bolt to a strap, which is held onto the lateral femoral cortex just below the innominate tubercle by two cortical screws (fig 1). The extreme stiffness of the mandrel and central bolt ensures that the femoral neck will not distort under stress and keep the cranial periphery of the thrust plate seated firmly on the neck during weight bearing. The osseous incorporation of the TPP and the adaptation of bone to local force transmission in the calcar area depend on a normal bone quality. Fink et al (7) found a high failure rate (14.8% at an average of 26 months) of this prosthesis when used in patients with polyarthritis. In patients with avascular necrosis of femoral head, they found an overall failure rate of 9.7% at an average of 4.8 years using the same prosthesis (8). We present short-term results of this implant in 50 patients with hip osteoarthritis.

PATIENTS AND METHODS

A retrospective analysis was carried out for the patients who underwent TPP between 1995 and 2003 in the department. Fifty-four such patients were operated upon, including 34 males and 20 females. Three patients died (2 males and 1 female) and one (male) was lost to follow-up. Fifty patients were therefore available for review with 31 (62%) males and 19 (38%) females. Thirty-seven (74%) underwent unilateral procedures and 13 (26%) underwent bilateral (b/l) procedures taking the total number of devices available for review to 63. Among the unilateral procedures 22 patients were operated on the right side and 15 on the left. In 3 patients (out of 13 b/l) both hips were operated in the same sitting.

Pre-operative diagnosis included:

- Primary osteoarthritis 23
- Developmental dysplasia of hip 8
- Avascular necrosis of the femoral head 7
- Perthes disease 4
- Post-traumatic arthritis 3
- Rheumatoid arthritis 2
- Ankylosing spondylitis 1
- Psoriatic arthropathy 1
- Slipped upper femoral epiphysis 1

Fourteen patients had had a previous operative intervention – core decompression (3), shelf procedure (1), intraarticular steroid injection (7), Heyman & Herndon procedure (2), and arthroscopic removal of loose body (1) [This patient had suffered from posterior dislocation of hip in the past, which was reduced closed].
All patients underwent CT scanning to assess the head-neck anteversion angle, an angle of more than 25° was considered excessive and the TPP was not offered to those patients.

Technique

All the operations were performed by a senior surgeon using the postero-lateral approach. The acetabular component (Fitmore) was fixed with cementless technique with or without a screw for additional stability. After resection of the femoral head, a drill guide was used to drill a central hole through the lateral femoral cortex and into the cancellous bone of the femoral neck. This provided a guide for face milling of the resected neck to create an appropriate seat for the thrust plate and for reaming the central channel for the mandrel. The mandrel was anchored to a lateral strap by a single bolt. The strap itself was then fixed to the proximal femur by two screws in all cases. All the joints had a metal-on-metal Metasul™ articulation.

The post-operative regime was similar to any other total hip replacement. The patients were followed regularly at 6 weeks, 3 months, 6 months, 1 year and then every two years thereafter. The average follow-up was 4.04 years with a range of 12 months to 8.5 years.

RESULTS

The mean age of the patients was 42.3 years (range 21-57 years). The mean follow-up was 4.04 years (range 1-8.5 years). Twenty five hips had a follow-up of ≥ 5 years (average 6.28 years, range 5-8 1/2 years) (fig 2). The mean pre-operative Harris Hip Score (HHS) was 41.9 points (range 12-89). The mean HHS at final follow-up was 89.91 (range 41-100). In 25 hips with ≥ 5yr follow-up the average hip score was 84.5 (range 50-100).

The acetabular cup consisted of a Fitmore shell in 62 cases and a CLS expansion in 1 case. The most common thrust plate size was 40 (30 hips) followed closely by 44 (27 hips). The most common bolt sizes were 70 and 78 (18 and 17 patients respectively).

Two hips dislocated in the early post-operative period. One patient collapsed due to cardiac ischaemia, was resuscitated immediately and transferred to the intensive therapy unit. The dislocated hip was reduced closed after the patient was stable. The other dislocated during routine mobilisation and was reduced by open reduction. The acetabular cup was found to have an excessive anteversion, which was corrected. Both of these patients did not have any further problems, the former is now 5.25 yrs and the latter 4.25 yrs post surgery. One
A patient had a transient neurapraxia of the sciatic nerve, which recovered completely by 6 weeks.

Aseptic implant loosening occurred in four (6.35%) patients. Three of them were revised, details of which are mentioned in table I. In the one not revised, breakage of screws fixing the lateral strap to the femoral shaft, was noticed at 1.5 yrs. The patient is 8 1/2 yrs post surgery now and does not want a revision. The HHS of this patient is 62 but she is coping well with activities of daily life at present. The cause for revision in all the three was progressive radiolucency in zones 1 and 2 of the femur as described for TPP by Fink et al (8). This led to migration of the mandrel into varus. The preoperative findings in all three included loose femoral component (no or minimal osteo-integration of mandrel) with a well-fixed acetabular component. One common feature was the preservation of upper femoral bone stock, which made implantation of an uncemented femoral stem easy (fig 1).

In one patient a wrong femoral head (Protasul™ instead of Metasul™) was implanted, which was corrected by repeat surgery within a few days. Two patients complained of discomfort at the lateral aspect of the thigh, from the strap. In both of these cases pain occurred in the initial year following surgery and settled spontaneously in one case and needed local steroid injection in the other. None of the patients suffered from infection (superficial or deep) or problems with wound healing.

Statistics

The average survival time was 8.07 years (95% CI: 7.54 to 8.61 years) with median survival time 8.50 years (fig 3).

For patients followed-up for ≥ 5 years the average survival time was 8.33 years (95% CI: 7.89 to 8.78 years) with median survival time of 8.5 years (fig 4).

Table I. — Details of patients who underwent revision surgery for implant loosening

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Age</th>
<th>Gender</th>
<th>Diagnosis</th>
<th>Duration to failure and component failed</th>
<th>Revision implant used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52</td>
<td>M</td>
<td>Primary OA</td>
<td>21 months, Femoral component</td>
<td>Zweymuller, cementless</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>M</td>
<td>Perthes Disease</td>
<td>68 months, Femoral component</td>
<td>Zweymuller, cementless</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
<td>F</td>
<td>Acetabular Dysplasia</td>
<td>39 months, Femoral component</td>
<td>Zweymuller, cementless</td>
</tr>
</tbody>
</table>

Fig. 3. — Kaplan-Meier survival curve for 63 thrust plate prostheses.

Fig. 4. — Kaplan-Meier survival curve for 25 Thrust Plate Prostheses with ≥ 5 years follow-up.
DISCUSSION

The treatment of hip arthritis in young patients is challenging. Problems of total hip arthroplasty in younger patients are related to their high demand life styles. This leads to greater stresses on the implant and an increased chance of early failure. Considering their age, these patients are likely to need a revision procedure later in their lifetime. Therefore, an implant that minimises loss of bone stock at the primary procedure presents a theoretical advantage. Although the first implantation of a TPP was performed in 1978 (12) there are few clinical outcome reports in literature (1, 7, 8, 12, 19, 20). As a consequence the prosthesis has not gained widespread acceptance among hip surgeons.

Implant failure due to aseptic loosening is by far the most significant issue when treating patients in this age group. The failure rate of TPP in the present study was 6.35% at an average of 4 years and 8% at an average of 6.3 years. The mode of failure in all three patients was due to varus angulation of the mandrel and radiolucency beneath the thrust plate (zone 1 and 2). These rates are comparable to earlier reports of failure of this prosthesis: Fink et al (8) – 9.7% in 72 hips with osteonecrosis at 4.8 years; Fink et al (7) 14.8% in 47 hips with polyarthritis at 26 months; Huggler et al (12) 21% in 115 hips at a maximum follow-up of 9 years; Zelle BA (19) 6.9% in 58 hips. The most encouraging results with the use of this prosthesis have been reported by Buergi et al (1). In their case series of 102 hips they have reported a 2% rate of aseptic loosening at an average of 4.8 years. Their detailed description of the types of bone remodelling around the prosthesis and their mechanisms is interesting. Of particular interest was the observation of bone growth over the thrust plate, engulfing its laterocranial lip without any signs of loosening which was observed in some patients in our series as well, although we do not know the significance of this finding. Our higher rate of failure compared to their series may reflect the learning curve required in the proficient use of this technically demanding procedure. The mode of failure of the prosthesis in all these studies has been consistent, i.e. radiolucency beneath the thrust plate in zones 1 and 2.

The main technical difficulty in using this prosthesis is the exact seating of the thrust plate in order to restore the femoral neck-shaft angle. To ensure near physiological loads on the proximal femur, the TPP should be implanted at an inclination angle of 125-135° (9). Implantation of the TPP in varus position leads to shearing forces, resulting in caudal slipping of the thrust plate. The disadvantages of valgus implantation include deviation of the plate at the lateral femur, decreased range of motion of the hip joint and unphysiological loads on the proximal femur (10). Although meticulous pre-operative planning is helpful, to reproduce the pre-operative measurements at the time of surgery is technically difficult. Patients with excessive anteversion, short femoral neck and an excessive valgus of the femoral neck are not suitable for this procedure.

Discomfort from the lateral strap is another problem with the use of TPP. This occurs due to the irritation of the fascia lata by the lateral strap or the bolt. Although the present generation (3rd) of implant is made of titanium alloy with a smaller lateral strap, some patients still complain of difficulty in lying on the operated side. Two patients in our group complained of this problem.

We have come across two other complications reported in literature with the use of this prosthesis. Fink et al (6) reported a spontaneous fracture of the femur below the tip of the lateral plate in a patient with rheumatoid arthritis without any evidence of inferior bone quality or improper angle of implantation. Zelle et al (18) reported an unacceptably high rate of dislocation (8.6%) in their series using TPP. They, however, attributed this to the fact that all dislocations occurred in patients who had undergone previous surgeries to their hip.

Several authors have reported poor results after total hip arthroplasty in young patients (2, 9, 14, 16, 18). Kim et al (15) in a study of 78 uncemented stemmed prosthetic hip replacements with metal on polyethylene articulation found significant peri-prosthetic osteolysis in 20.5% at an average of 7.2 years. Dorr et al (4) reported 19% revision rate in 31 hips in patients less than 45 years old with more than 5 years follow-up. The results in the same cohort of patients in Dorr et al’s study (5) at an average follow-up of 9.2 years revealed a
revision rate of 33%. This shows that the results tend to deteriorate as the length of follow-up increases in younger patients.

The problem of osteolysis leading to failure has renewed the interest in metal-on-metal articulation in total hip replacements. The results of metal-on-metal articulation resurfacing have been encouraging with a revision rate of 0.02% at an average of 3.3 years (3). The use of this articulation has reduced the incidence of osteolysis and thereby revision in both cemented (2% revision at an average of 5.2 years) (6) and uncemented total hip replacements (no revision at an average of 5 years) (17). The failure rate of TPP is higher when compared to these series. With renewed interest in metal-on-metal hip resurfacing arthroplasty, the indications of TPP have reduced and such has been the case in our practice as well. However, it is our experience that on occasion it has not been possible to implant a surface replacement and the TPP was an alternative conservative total hip replacement.

The limitation of our study is the duration of follow-up with a maximum available average follow-up of 6.3 years (in 25 hips). There is sufficient evidence in the literature that suggests that hip implants which have good early results may show deterioration in results and survivorship with long-term follow-up.

To summarise, we believe that TPP is a feasible implant for the treatment of young patients with osteoarthritis of the hip joint. The advantage of the thrust plate prosthesis, in the authors’ opinion, is the preservation of proximal femoral bone stock thereby facilitating the conversion to an intramedullary anchored prosthesis in the event of patient needing a revision procedure. The disadvantages are technical difficulty in restoring the femoral neck-shaft angle, lateral thigh pain and a higher failure rate when compared to hip resurfacing arthroplasty. The long-term results will have to be evaluated in further trials.

REFERENCES

